35 research outputs found
Bayesian Spatio-Temporal Prediction and Counterfactual Generation: An Application in Non-Pharmaceutical Interventions in COVID-19
The spatio-temporal course of an epidemic (such as COVID-19) can be significantly affected by non-pharmaceutical interventions (NPIs) such as full or partial lockdowns. Bayesian Susceptible-Infected-Removed (SIR) models can be applied to the spatio-temporal spread of infectious diseases (STIFs) (such as COVID-19). In causal inference, it is classically of interest to investigate the counterfactuals. In the context of STIF, it is possible to use nowcasting to assess the possible counterfactual realization of disease in an incidence that would have been evidenced with no NPI. Classic lagged dependency spatio-temporal IF models are discussed, and the importance of the ST component in nowcasting is assessed. Real examples of lockdowns for COVID-19 in two US states during 2020 and 2021 are provided. The degeneracy in prediction over longer time periods is highlighted, and the wide confidence intervals characterize the forecasts. For SC, the early and short lockdown contrasted with the longer NJ intervention. The approach here demonstrated marked differences in spatio-temporal disparities across counties with respect to an adherence to counterfactual predictions
Recommended from our members
Preliminary estimation of temporal and spatiotemporal dynamic measures of COVID-19 transmission in Thailand
Background As a new emerging infectious disease pandemic, there is an urgent need to understand the dynamics of COVID-19 in each country to inform planning of emergency measures to contain its spread. It is essential that appropriate disease control activities are planned and implemented in a timely manner. Thailand was one of the first countries outside China to be affected with subsequent importation and domestic spread in most provinces in the country. Method A key ingredient to guide planning and implementation of public health measures is a metric of transmissibility which represents the infectiousness of a disease. Ongoing policies can utilize this information to plan appropriately with updated estimates of disease transmissibility. Therefore we present descriptive analyses and preliminary statistical estimation of reproduction numbers over time and space to facilitate disease control activities in Thailand. ResultsThe estimated basic reproduction number for COVID-19 during the study ranged from 2.23тАУ5.90, with a mean of 3.75. We also tracked disease dynamics over time using temporal and spatiotemporal reproduction numbers. The results suggest that the outbreak was under control since the middle of April. After the boxing stadium and entertainment venues, the numbers of new cases had increased and spread across the country. Discussion Although various scenarios about assumptions were explored in this study, the real situation was difficult to determine given the limited data. More thorough mathematical modelling would be helpful to improve the estimation of transmissibility metrics for emergency preparedness as more epidemiological and clinical information about this new infection becomes available. However, the results can be used to guide interventions directly and to help parameterize models to predict the impact of these interventions
Recommended from our members
Two-step spatiotemporal anomaly detection corrected for lag reporting time with application to real-time dengue surveillance in Thailand
Background: Dengue infection ranges from asymptomatic to severe and life-threatening, with no specific treatment available. Vector control is crucial for interrupting its transmission cycle. Accurate estimation of outbreak timing and location is essential for efficient resource allocation. Timely and reliable notification systems are necessary to monitor dengue incidence, including spatial and temporal distributions, to detect outbreaks promptly and implement effective control measures.
Methods: We proposed an integrated two-step methodology for real-time spatiotemporal cluster detection, accounting for reporting delays. In the first step, we employed space-time nowcasting modeling to compensate for lags in the reporting system. Subsequently, anomaly detection methods were applied to assess adverse risks. To illustrate the effectiveness of these detection methods, we conducted a case study using weekly dengue surveillance data from Thailand.
Results: The developed methodology demonstrated robust surveillance effectiveness. By combining space-time nowcasting modeling and anomaly detection, we achieved enhanced detection capabilities, accounting for reporting delays and identifying clusters of elevated risk in real-time. The case study in Thailand showcased the practical application of our methodology, enabling timely initiation of disease control activities.
Conclusion: Our integrated two-step methodology provides a valuable approach for real-time spatiotemporal cluster detection in dengue surveillance. By addressing reporting delays and incorporating anomaly detection, it complements existing surveillance systems and forecasting efforts. Implementing this methodology can facilitate the timely initiation of disease control activities, contributing to more effective prevention and control strategies for dengue in Thailand and potentially other regions facing similar challenges
Recommended from our members
Perspectives and challenges in developing and implementing integrated dengue surveillance tools and technology in Thailand: a qualitative study
Background: Dengue remains a persistent public health concern, especially in tropical and sub-tropical countries like Thailand. The development and utilization of quantitative tools and information technology show significant promise for enhancing public health policy decisions in integrated dengue control. However, the effective implementation of these tools faces multifaceted challenges and barriers that are relatively underexplored.
Methods: This qualitative study employed in-depth interviews to gain a better understanding of the experiences and challenges of quantitative tool development and implementation with key stakeholders involved in dengue control in Thailand, using a phenomenological framework. A diverse range of participants, including public health workers and dengue control experts, participated in these interviews. The collected interview data were systematically managed and investigated using thematic analysis to extract meaningful insights.
Results: The ability to collect dengue surveillance data and conduct ongoing analyses were contingent upon the availability of individuals possessing essential digital literacy and analytical skills, which were often in short supply. Furthermore, effective space-time early warning and precise data collection were hindered by the absence of user-friendly tools, efficient reporting systems, and complexities in data integration. Additionally, the study underscored the importance of the crucial role of community involvement and collaboration among organizations involved in integrated dengue surveillance, control and quantitative tool development.
Conclusions: This study employed a qualitative approach to gain a deeper understanding of the contextual intricacies surrounding the development and implementation of quantitative tools, which, despite their potential for strengthening public health policy decisions in dengue control, remain relatively unexplored in the Thai context. The findings yield valuable insights and recommendations for the development and utilization of quantitative tools to support dengue control in Thailand. This information also has the potential to support use of such tools to exert impact beyond dengue to a broader spectrum of diseases
Evaluation and comparison of spatial cluster detection methods for improved decision making of disease surveillance:a case study of national dengue surveillance in Thailand
BACKGROUND: Dengue is a mosquito-borne disease that causes over 300 million infections worldwide each year with no specific treatment available. Effective surveillance systems are needed for outbreak detection and resource allocation. Spatial cluster detection methods are commonly used, but no general guidance exists on the most appropriate method for dengue surveillance. Therefore, a comprehensive study is needed to assess different methods and provide guidance for dengue surveillance programs.METHODS: To evaluate the effectiveness of different cluster detection methods for dengue surveillance, we selected and assessed commonly used methods: Getis Ord [Formula: see text], Local Moran, SaTScan, and Bayesian modeling. We conducted a simulation study to compare their performance in detecting clusters, and applied all methods to a case study of dengue surveillance in Thailand in 2019 to further evaluate their practical utility.RESULTS: In the simulation study, Getis Ord [Formula: see text] and Local Moran had similar performance, with most misdetections occurring at cluster boundaries and isolated hotspots. SaTScan showed better precision but was less effective at detecting inner outliers, although it performed well on large outbreaks. Bayesian convolution modeling had the highest overall precision in the simulation study. In the dengue case study in Thailand, Getis Ord [Formula: see text] and Local Moran missed most disease clusters, while SaTScan was mostly able to detect a large cluster. Bayesian disease mapping seemed to be the most effective, with adaptive detection of irregularly shaped disease anomalies.CONCLUSIONS: Bayesian modeling showed to be the most effective method, demonstrating the best accuracy in adaptively identifying irregularly shaped disease anomalies. In contrast, SaTScan excelled in detecting large outbreaks and regular forms. This study provides empirical evidence for the selection of appropriate tools for dengue surveillance in Thailand, with potential applicability to other disease control programs in similar settings.</p
Investigating the spatiotemporal patterns and clustering of attendances for mental health services to inform policy and resource allocation in Thailand
Background: Mental illness poses a substantial global public health challenge, including in Thailand, where exploration of access to mental health services is limited. The spatial and temporal dimensions of mental illness in the country are not extensively studied, despite the recognized association between poor mental health and socioeconomic inequalities. Gaining insights into these dimensions is crucial for effective public health interventions and resource allocation. Methods: This retrospective study analyzed mental health service utilization data in Thailand from 2015 to 2023. Temporal trends in annual numbers of individuals visiting mental health services by diagnosis were examined, while spatial pattern analysis employed MoranтАЩs I statistics to assess autocorrelation, identify small-area clustering, and hotspots. The implications of our findings for mental health resource allocation and policy were discussed. Results: Between 2015 and 2023, mental health facilities documented a total of 13,793,884 visits. The study found anxiety, schizophrenia, and depression emerged as the top three illnesses for mental health visits, with an increase in patient attendance following the onset of the COVID-19 outbreak. Spatial analysis identified areas of significance for various disorders across different regions of Thailand. Positive correlations between certain disorder pairs were found in specific regions, suggesting shared risk factors or comorbidities. Conclusions: This study highlights spatial and temporal variations in individuals visiting services for different mental disorders in Thailand, shedding light on service gaps and socioeconomic issues. Addressing these disparities requires increased attention to mental health, the development of appropriate interventions, and overcoming barriers to accessibility. The findings provide a baseline for policymakers and stakeholders to allocate resources and implement culturally responsive interventions to improve mental health outcomes
Evaluation of Kato-Katz and multiplex quantitative polymerase chain reaction performance for clinical helminth infections in Thailand using a latent class analysis
Using an appropriate diagnostic tool is essential to soil-transmitted helminth control and elimination efforts. Kato-Katz (KK) is the most commonly used diagnostic, but recently other tools, such as real-time quantitative polymerase chain reaction (multiplex qPCR), are starting to be employed more. Here, we evaluated the performance of these two diagnostic tools for five helminth species in Thailand. In the absence of a gold standard, diagnostic performance can be evaluated using latent class analysis. Our results suggest that in moderate to high prevalence settings above 2% multiplex qPCR could be more sensitive than KK, this was particularly apparent for Opisthorchis viverrini in the northeastern provinces. However, for low prevalence, both diagnostics suffered from low sensitivity. Specificity of both diagnostics was estimated to be high (above 70%) across all settings. For some specific helminth infection such as O. viverrini, multiplex qPCR is still a preferable choice of diagnostic test. KK performed equally well in detecting Ascaris lumbricoides and Taeniasis (Taenia spp.) when the prevalence is moderate to high (above 2%). Neither test performed well when the prevalence of infection is low (below 2%), and certainly in the case for hookworm and Trichuris trichiura. Combination of two or more diagnostic tests can improve the performance although the cost would be high. Development of new methods for helminth surveillance at the pre-elimination phase is therefore very important.
This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'
Recommended from our members
Bayesian spatio-temporal distributed lag modeling for delayed climatic effects on sparse malaria incidence data
Background In many areas of the Greater Mekong Subregion (GMS), malaria endemic regions have shrunk to patches of predominantly low-transmission. With a regional goal of elimination by 2030, it is important to use appropriate methods to analyze and predict trends in incidence in these remaining transmission foci to inform planning efforts. Climatic variables have been associated with malaria incidence to varying degrees across the globe but the relationship is less clear in the GMS and standard methodologies may not be appropriate to account for the lag between climate and incidence and for locations with low numbers of cases. Methods In this study, a methodology was developed to estimate the spatio-temporal lag effect of climatic factors on malaria incidence in Thailand within a Bayesian framework. A simulation was conducted based on ground truth of lagged effect curves representing the delayed relation with sparse malaria cases as seen in our study population. A case study to estimate the delayed effect of environmental variables was used with malaria incidence at a fine geographic scale of sub-districts in a western province of Thailand. Results From the simulation study, the model assumptions which accommodated both delayed effects and excessive zeros appeared to have the best overall performance across evaluation metrics and scenarios. The case study demonstrated lagged climatic effect estimation of the proposed modeling with real data. The models appeared to be useful to estimate the shape of association with malaria incidence. Conclusions A new method to estimate the spatiotemporal effect of climate on malaria trends in low transmission settings is presented. The developed methodology has potential to improve understanding and estimation of past and future trends in malaria incidence. With further development, this could assist policy makers with decisions on how to more effectively distribute resources and plan strategies for malaria elimination
Recommended from our members
Evaluation and comparison of spatial cluster detection methods for improved decision making of disease surveillance: a case study of national dengue surveillance in Thailand
Background: Dengue is a mosquito-borne disease that causes over 300 million infections worldwide each year with no specific treatment available. Effective surveillance systems are needed for outbreak detection and resource allocation. Spatial cluster detection methods are commonly used, but no general guidance exists on the most appropriate method for dengue surveillance. Therefore, a comprehensive study is needed to assess different methods and provide guidance for dengue surveillance programs.
Methods: To evaluate the effectiveness of different cluster detection methods for dengue surveillance, we selected and assessed commonly used methods: Getis Ord GiтИЧ, Local Moran, SaTScan, and Bayesian modeling. We conducted a simulation study to compare their performance in detecting clusters, and applied all methods to a case study of dengue surveillance in Thailand in 2019 to further evaluate their practical utility.
Results: In the simulation study, Getis Ord GiтИЧ and Local Moran had similar performance, with most misdetections occurring at cluster boundaries and isolated hotspots. SaTScan showed better precision but was less effective at detecting inner outliers, although it performed well on large outbreaks. Bayesian convolution modeling had the highest overall precision in the simulation study. In the dengue case study in Thailand, Getis Ord GiтИЧ and Local Moran missed most disease clusters, while SaTScan was mostly able to detect a large cluster. Bayesian disease mapping seemed to be the most effective, with adaptive detection of irregularly shaped disease anomalies.
Conclusions: Bayesian modeling showed to be the most effective method, demonstrating the best accuracy in adaptively identifying irregularly shaped disease anomalies. In contrast, SaTScan excelled in detecting large outbreaks and regular forms. This study provides empirical evidence for the selection of appropriate tools for dengue surveillance in Thailand, with potential applicability to other disease control programs in similar settings
Spatiotemporal Epidemiology of Tuberculosis in Thailand from 2011 to 2020
Tuberculosis is a leading cause of infectious disease globally, especially in developing countries. Better knowledge of spatial and temporal patterns of tuberculosis burden is important for effective control programs as well as informing resource and budget allocation. Studies have demonstrated that TB exhibits highly complex dynamics in both spatial and temporal dimensions at different levels. In Thailand, TB research has been primarily focused on surveys and clinical aspects of the disease burden with little attention on spatiotemporal heterogeneity. This study aimed to describe temporal trends and spatial patterns of TB incidence and mortality in Thailand from 2011 to 2020. Monthly TB case and death notification data were aggregated at the provincial level. Age-standardized incidence and mortality were calculated; time series and global and local clustering analyses were performed for the whole country. There was an overall decreasing trend with seasonal peaks in the winter. There was spatial heterogeneity with disease clusters in many regions, especially along international borders, suggesting that population movement and socioeconomic variables might affect the spatiotemporal distribution in Thailand. Understanding the space-time distribution of TB is useful for planning targeted disease control program activities. This is particularly important in low- and middle-income countries including Thailand to help prioritize allocation of limited resources