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Abstract: The spatio-temporal course of an epidemic (such as COVID-19) can be signicantly affected
by non-pharmaceutical interventions (NPIs) such as full or partial lockdowns. Bayesian Susceptible-
Infected-Removed (SIR) models can be applied to the spatio-temporal spread of infectious diseases
(STIFs) (such as COVID-19). In causal inference, it is classically of interest to investigate the counter-
factuals. In the context of STIF, it is possible to use nowcasting to assess the possible counterfactual
realization of disease in an incidence that would have been evidenced with no NPI. Classic lagged
dependency spatio-temporal IF models are discussed, and the importance of the ST component in
nowcasting is assessed. Real examples of lockdowns for COVID-19 in two US states during 2020 and
2021 are provided. The degeneracy in prediction over longer time periods is highlighted, and the wide
condence intervals characterize the forecasts. For SC, the early and short lockdown contrasted with
the longer NJ intervention. The approach here demonstrated marked differences in spatio-temporal
disparities across counties with respect to an adherence to counterfactual predictions.

Keywords: Bayesian; counterfactual; causal; nowcasting; spatio-temporal; prediction; non-
pharmaceutical interventions; NPIs

1. Introduction

During the COVID-19 pandemic period of 2020, many countries worldwide enacted
lockdowns to try to control the spread of the virus. These lockdowns are examples of non-
pharmaceutical interventions (NPIs), and they were used mainly prior to the availability
of vaccination.

The CDC notes that:

Nonpharmaceutical Interventions (NPIs) are actions, apart from getting vacci-
nated and taking medicine, that people and communities can take to help slow
the spread of illnesses such as pandemic inuenza (u). NPIs are also known as
community mitigation strategies. When a new u virus spreads among people,
causing illness worldwide, it is called a pandemic u. Because a pandemic u
virus is new, the human population has little or no immunity against it. This
allows the virus to spread quickly from person to person worldwide. NPIs are
among the best ways of controlling pandemic u when vaccines are not yet
available.

(https://www.cdc.gov/nonpharmaceutical-interventions/ (accessed on 20 Jan-
uary 2023))

Viruses 2023, 15, 325. https://doi.org/10.3390/v15020325 https://www.mdpi.com/journal/viruses
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NPIs can take various forms, and they can extend for different time periods. In the
US, many southern states enacted lockdowns for only a few weeks, whereas northern state
lockdowns were longer. In some cases, only partial lockdowns were observed, whereby
some businesses remained open, but e.g., schools were shut. In the US state of South
Carolina (SC), initial case reports in earlyMarch 2020, followed by the pandemic declaration
by WHO (12 March), led to a state of emergency declaration on 13 March and school
closures on 15 March; restaurants closed on 17 March, and on 19 March, non-essential state
employees and colleges were to shelter in place.

Not until 1 April did the state authorize the closure of non-essential businesses. 3
April saw the introduction of travel restrictions, and on 7 April, a full lockdown with
non-essential travel banned and work at home was ordered.

By 21 April, retail stores were allowed to reopen, and by 4 May, the home and work
order was lifted, and outdoor dining was allowed. Finally, by 11 June, all restrictions were
lifted. In effect, the main full lockdown lasted only 2 weeks.

Figure 1 displays the case count time proles for the Charleston and Richland counties
in SC during the rst part of the pandemic, for 353 days up to the end of February 2021.
Listed are the early dates related to the lockdowns in 2020. It is notable that following the
full lifting of lockdowns in June 2020, there were signicant increases in the case counts
leading into the large summer wave. Whether the partial or full lockdowns were effective
in controlling the early spread is difcult to ascertain.

Figure 1. Case count proles for two South Carolina counties during the rst 353 days of the
pandemic. Only the early lockdown dates are shown.

2. Assessing the Effects of NP Interventions

It is clear that NPIs have to be compared to situations where interventions have not
been introduced. This leads to a difculty in that nding a suitably matched location or time
period with null conditions which can be used as a comparator is crucial. With time series,
it is possible forecast future outcomes based on currently observed data. As an extension
to this, it is sometimes useful to make predictions based on lagged observations when the
current data or recent data are lacking. This prediction is termed nowcasting [1,2]. It has
been applied extensively in economic research, and is now being adopted in infectious
disease epidemiology for making health outcome predictions [3]. More recently, during the
COVID-19 pandemic, the use of nowcasting has been proposed to generate predictions for
the modications of social mobility during NPIs [4]. An area that has not been examined
is the use of nowcasting to make counterfactual predictions of health outcome events. In
particular, the use of observed case count data to predict case counts which are altered by
NPIs could be a useful approach in understanding the effects of such interventions.
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The aim of this paper is to demonstrate the use of nowcasting with Bayesian spatio-
temporal models in application to the evaluation of the performance of lockdown NPIs
at the county level in two contrasting states in the US: South Carolina (SC) and New
Jersey (NJ). Our choice of state to examine is based on the contrast between the population
structure and the political structure of the respective states during the pandemic. SC is a
southern state which had a Republican governor and a small mainly rural or semi-rural
population (5.2 million), whereas NJ is a northern state with a Democrat governor and a
large highly urban population (8.88 million). In each state, different NPIs were adopted,
and it is our aim to ascertain how effective these were. Our focus is on the case count data
only, and we do not examine the mortality counterfactuals, although these could also be
a focus.

In the next section, we outline the models evaluated in this study, the generation of
counterfactuals, and their comparative evaluations using differential metrics. The data
used were made available from the NYT GitHub repository (https://github.com/nytimes/
covid-19-data, accessed on 29 November 2022), which has recorded cases and death counts
from the State Departments of Health (cases) and the National Center for Health Statistics
(NCHS) (deaths) during the course of the pandemic.

The data used here are in the form of daily case and death counts for each county in
each state for the period of 353 days from 6 March 2020 to 21 February 2021. Death counts
are used only for updating the susceptible population within the case count models, and
they themselves are not modeled.

3. The Bayesian Spatiotemporal Case Model

A number of approaches could be considered for the modeling of case count data of the
above kind. For example, conventional mathematical models could be used [5], although
these do not usually provide statistical error estimates, nor spatial referencing. Our spatial
SIR models are essentially extensions of the difference representations of these models
embedded within a statistical modeling framework. Time series or machine learning
models could be employed to model counts within separate regions (see e.g., [6,7]). While
these approaches can yield exible results, they do not address the spatial structure of the
epidemic spread. The pandemic clearly crosses boundaries with personal mobility [8]. In
addition, our Bayesian SIR models address the data quality directly (daily count data), and
they allow for error estimation from count data models and the appropriate condence
interval estimation.

Lawson and Kim (2021) [9] proposed a Bayesian spatio-temporal COVID-19 case count
model, and this was evaluated on the rst 88 days of the pandemic in the counties of SC.
Subsequently, this model was extended and updated for the analysis of 353 days [10].
The later analysis of the three waves included a wide range of potential models and
modeling strategies. Our models for counterfactuals are based on the retrospective analysis
results found.

We dene the case count as yij in the i th area and in the j th time period. In our
example, the areas are counties and the time period is days. For SC, the number of counties
is m = 46, and for NJ, it is m = 22. The total time period is T = 353 days.

As the spread of infection is an important component of infectious disease modeling,
we assume a Susceptible-Infected-Removed (SIR) model for the process. Essentially,

yij ∼ Pois(µij)

µij = Sij.exp(pri,j−1)
(1)

where Sij is the susceptible population in the i,j th unit and pri,j−1 is a propagator that allows
for the transmission as a function of previous counts and related factors.

An example of a simple propagator could be

pri,j−1 = α0 + α1log(yi,j−1) + vi (2)
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where there is a constant intercept acting as a log transmission rate, a dependence on the
previous infection count in the given county, and a nal random effect term vi which allows
for extra variation.

Different specications of pri,j−1 lead to a range of possible models. In these models,
the susceptible pool evolves over time, based on an accounting Equation:

Si,j = Si,j−1 − Ii,j−1 − Ri,j−1 (3)

where Ii,j−1is the true infective count at the previous time, which is a function of yi,j−1.
The relationship between the true infective count and the observed count depends

on the level of undetected cases. This could be related to the testing frequency, and also
to unobserved asymptomatic transmission. Previous studies have noted a variety of
asymptomatic rates during the pandemic (e.g., [11,12]). We assumed a rate of 20%, which
is a reasonable compromise between the previous levels reported for different population
groups. 12 Hence, we assume that the true infective count is a scaled version of the observed
count: Ii,j−1 = λyi,j−1. The removal term can also be specied as a function of the infective
numbers. It is also a function of mortality, and so the total removal can be specied as

Ri,j = γIi,j + di,j (4)

where di,j is the current death count. The scaling parameter (γ) can be xed. In this case, it
was assumed to be 0.1. However, a range of values has been examined for this parameter,
and the resulting analysis was not affected by this choice.

In previous work [10], it was found that, out of a range of potential models, for South
Carolina counties, the model with propagator

pri,j−1 = α0 + α1log(yi,j−1) + α2log(∑
k∈δi

yk,j−1) + vi + xtiβ (SC1) (5)

had the lowest WAIC. In this model, the ∑
k∈δi

yk,j−1 term represents a neighborhood effect

(the sum of previous count over the neighborhood set δi, while xtiβ is a linear predictor
involving county-level SES predictors (% under the poverty line, % black population, mul-
tidimensional deprivation index for 2017 (https://www.census.gov/library/publications/
2019/acs/acs-40.html, accessed on 29 November 2022). In the case of New Jersey, a similar
modeling strategy led to the choice of the propagator

pri,j−1 = α0 + α1log(yi,j−1) + α2log(∑
k∈δi

yk,j−1) + vi + ui + xtiβ (NJ1) (6)

where the term ui is a spatially correlated effect, and xtiβ is a linear predictor, as above. The
spatially correlated term was assumed to follow an ICAR prior distribution [13], and the
uncorrelated effect vi has a zero mean Gaussian distribution:

vi ∼ N(0, τ−1
v )

ui
∣∣{uk}k 6=i ∼ N(uδi , τ

−1
u /nδi )

(7)

where uδi is the mean of u in the neighborhood of the i th county. The model with this ui
term was not selected in the SC example, which suggests that there is more heterogeneity
present in the NJ case.

4. Death Count Modeling

Death counts are also observed, and these are usually related to case numbers, either
current or lagged. It is unlikely that deaths for COVID-19 could arise without there being
a case reported (at least in the main epidemic period), and so the dependence on lagged
case counts is a reasonable assumption. The current death count is dened to be di,j, and
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once again, we assume a Poisson data model, so that di,j ∼ Pois(µd
i,j). Here, the mean death

count is parameterized as

log(µd
ij) = αd0 + αd1jlog(yi,j) + αd2jlog(Ti,j−1) + vdi DC1

where Tij = ∑
k=1:j

yi,k. (8)

The form of the dependence relies on the need to make the deaths dependent on
counts, but with a potential lag of undened length. Hence, it is assumed that cumulative
case counts should be included, as well as the current case number. This model form has
been found to provide a good t to mortality data in the pandemic [10,14].

5. Nowcasting and Counterfactuals

Nowcasting is often used in situations where infectious disease is being monitored
but where a reporting delay occurs [3,14,15]. This delay can lead to a bias such as under-
reporting or mis-attribution. To alleviate this delay bias, a form of forecasting is used,
whereby the projections of case numbers are made from the existing data up to the current
time. Once the updated data are available, then the count is adjusted. The process is
continued until the nal time point of the study.

This form of missing data forecasting can be applied in other situations. Non-
pharmaceutical interventions (NPIs) are often implemented during epidemic periods to
try to reduce the spread of disease. These interventions often require spatial restrictions,
such as social distancing and mobility constraints such as travel/work bans, or ‘work at
home’ mandates and business closures. These are often referred to as lockdowns. During
the early part of 2020, many places around the globe implemented lockdowns of various
forms to reduce COVID-19 spread. These usually took the form of gradual business and
school closures, and nal travel bans.

In this paper we examine the use of nowcasting to try to predict the effects of lockdown,
or their lifting, on the COVID-19 experience in two contrasting US states: South Carolina
(SC) and New Jersey (NJ). SC is a southern state with a small population (~5 million) and
only small urban centers (Charleston, Columbia, Greenville, and Spartanburg). NJ is an
urbanized state with a much larger population (~9 million), and it has (partly) suburban
population centers of Trenton, Newark, Jersey City, and Atlantic City bordering the city of
New York. We examine the county level case counts of COVID-19 during the lockdown
periods relevant to SC and NJ. These periods differ, as the state governors decided to
implement different types and periods of lockdown. For SC, the lockdown started on
13 March and the partial lifting of lockdown happened on 31 March (18 days). The nal
lifting occurred on 13 May, but many activities were resumed before this date. For NJ,
the lockdown was prolonged until 9 June (80 days) following a partial lockdown from
9 March until 21 March. The use of a counterfactual generation for the COVID-19 NPIs
was proposed for employment data previously [4]. The application of the counterfactual
generation to spatio-temporal COVID-19 modeling has not been reported before.

6. Counterfactual Generation

Consider the historical case count data, and assume that a good model is known
for these data. We will return to the denition of a good or ‘best’ model at a later stage.
For that good model at a xed time (T), a prediction from the model is made. For a
spatio-temporal model, this prediction is made for all regions under study: in this case,
counties. Unsupervised prediction for K time units is used to assess what the effect of
continuation under a pre-T model has compared to the actual observed count over the
K time periods. The differences between the observed and counterfactual (predicted)
count are then summarized, and a comparison is made between the SC and NJ state
level responses.

The algorithm steps are:

(1) Retrospectively t the ‘best’ model for data, up to and including time T.
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(2) Essentially, we use MCMC sampling from the converged posterior up to T. A large
parameter sample is then taken, and the SIR count model is allowed to evolve to time
T + K, so that a set of predicted counts ypi,T+1........y

p
i,T+K is generated using

{ypi,k} ∼ Pois({Si,k.exp(pi,k)})
{pi,k} = {α0}+ {α1}log(ypi,k−1) + {α2}log( ∑

l∈δi

ypl,k−1) + {vi}+xti{β}

{} denotes the sampled parameter set
δi is the neighborhood set of the i th region

(9)

This is essentially generating predictions from SC1. For NJ1, an added ICAR term is
included. Note that death counts must also be generated, as the case predictions will be
a function of the accounting equation, which is a function of the concurrent death count.
These are generated from the ‘best’ death count model. In this case, it is assumed to be DC1.

In this way, a counterfactual is generated in each county and for each time period,
which can then be compared with the observed count during the NPI. For SC, the best
model used was that found during a retrospective model search of a wide range of potential
models (SC1). A similar search for NJ models led to the use of NJ1 as the ‘best model’ [10].

All Bayesian models were tted using posterior sampling, based on the R package
Nimble [16] This allows for the specication of a range of likelihood and prior models, and
the sampling of the posterior functionals generated using the above algorithm.

7. South Carolina Counties

We assumed that the crucial time points for this state, measured from the rst case,
6 March, were T = { 26,42,68}. The rst marks the initiation of lockdown; the second, the
partial lifting; and third is the nal lifting of the lockdown (13 May). Examined were
counterfactuals of lengths 16, 26, and 40. The nal end date was 22 June.

Figures 2–5 display the results for four SC counites at T = 26. In these displays, the
counterfactual is denoted by a thin solid purple line. The 95% credible interval for the
counterfactual is shown in purple shading. The mean squared error of the model t and
mean absolute predictive error is also shown. It is notable that for this rst period until
mid-April, Richland is below the observed count, and Charleston is mostly higher than
that observed. Greenville and Spartanburg show a variable picture with many spikes of
cases, followed by gaps during this period.

Figure 2. Counterfactual for Richland county at T = 26.
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Figure 3. Counterfactual for Charleston county at T = 26.

Figure 4. Counterfactual for Greenville county at T = 26.

Figure 5. Counterfactual for Spartanburg county at T = 26.
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Figures 6–9 display the counterfactuals for the same four counties at time T = 68, which
is the end of the lockdown period. We do not display the intermediate case time point here,
nor the counterfactuals for deaths, for brevity.

Figure 6. Counterfactual for Richland county at T = 68.

Figure 7. Counterfactual for Charleston county at T = 68.

In general, the gures show considerable between-county variation, but also a rela-
tively close t of the underlying model for a variety of counties. In contrast, the displays
suggest differences between the counterfactuals and the observed counts, and it is more
relevant to compute the summary measures of the differences. In Table 1, we present the
results for estimating the mean differences between the counterfactuals and the observed
counts. We dene the difference at time k as

ei,k = ypi,k − yi,k and the mean difference is mean
k

(ei,k).

The MAPE is given by (M)APEi,k = abs(ei,k) and the MSE by (M)SEi,k = e2i,k.
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Figure 8. Counterfactual for Greenville county at T = 68.

Figure 9. Counterfactual for Spartanburg county at T = 68.

Table 1. Mean differences between counterfactuals and observed counts averaged over the respective
time periods. T is time point, and K is extent. Model assumed is SC1.

Time Charleston Richland Greenville Spartanburg

T26K16 −1.68 −11.1 −9.06 −1.37

T42K26 10.6 2.34 −4.00 6.57

T68K40 −23.8 −15.3 −48.6 −11.4
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These time-based loss measures are shown on the counterfactual gures.
In Table 1, we display the average differential between the counterfactual and over-

served count over the time period of prediction (16, 26, or 40). In this table, any negative
difference in the overall mean levels represents a situation where the case load is higher
than the predicted counterfactual.

This suggests that the in the rst period, the prediction was everywhere lower than
case counts, as there was limited lockdown. In the second period, Charleston and Richland
achieved positive results as they remained under lockdown with lower case numbers,
whereas Greenville remained negative. In fact, Greenville remained with a high case load
throughout out the periods, and this suggested that compliance was poor in this county.
However, Spartanburg had a similar pattern to Richland and Charleston. It is important to
note that the early lockdowns did not help the case count in the second larger wave during
the summer of 2020. All of the predictions returned negative mean differences during the
nal period. It is notable that the predictions across long lags tended to have wide credible
intervals, and so, some degree of uncertainty in these estimates remains [15]. In addition,
it is also notable that beyond the initial step predictions, the SIR model leads to almost
constant overall risk mean levels. This is typically due to lack of future data support and
the need for shocks within a SIR model to allow for peak generation.

8. New Jersey Counties

We assumed that the crucial time points for this state, measured from 6 March, were
T = {8,16,96}. The rst marks the initial restrictions on 14 March, and the second, on 22
March, when a more restrictive lockdown was imposed. The last time for this was when
the lockdown was nally lifted (10 June). In this case, we have examined a 40 day period
beyond the T times to examine longer term lockdown effects.

Figures 10–21 display the results of tting the model NJ1 and the posterior expected
counterfactuals for the counties of Gloucester, Bergen, Hunterdon, and Middlesex.

Figure 10. Counterfactual for Gloucester county, T = 8.
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Figure 11. Counterfactual for Bergen county, T = 8.

Figure 12. Counterfactual for Hunterdon county, T = 8.
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Figure 13. Counterfactual for Middlesex county, T = 8.

Figure 14. Counterfactual for Gloucester county, for T = 16.
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Figure 15. Counterfactual for Bergen county, T = 16.

Figure 16. Counterfactual for Hunterdon county, T = 16.
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Figure 17. Counterfactual for Middlesex county, T = 16.

Figure 18. Counterfactual for Gloucester county, T = 96.
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Figure 19. Counterfactual for Bergen county, T = 96.

Figure 20. Counterfactual for Hunterdon county, T = 96.
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Figure 21. Counterfactual for Middlesex county, T = 96.

It is clear from Figures 10–21 that a different pattern emerges for the nowcasting
counterfactuals for NJ. At T = 8, the nowcasts under-report the observed case counts
considerably. However, at T = 16, the situation improved with a higher rate of prediction,
although it was still mainly below the observed case count. By T = 96, the observed cases
were below the counterfactual. This is clearly reected in Table 2, where the differentials
become highly positive by T = 96. This suggests that at this point, the case load has been
reduced signicantly.

Table 2. Mean differences in counterfactuals and observed counts for four NJ counties based on the
assumed best model, NJ1.

Time Bergen Gloucester Hunterdon Middlesex

T8K40 −338.6 −21.4 −10.9 −225.1

T16K40 −306.2 −29.2 −10.8 −258.8

T96K40 172.2 17.0 7.8 147.4

9. Discussion

The counterfactual generation pursued in this paper has a number of drawbacks. First,
long-term prediction has been shown to demonstrate very wide credible intervals (see
e.g., Figures 2–5). This means that the predictions are potentially variable and that they
do not have high condence. This would appear to be in part because of the SIR model
form, but also as data support is limited, the further in the future the prediction is made. A
second issue that arises with SIR model predictions is that the overall risk level becomes
relatively constant over time. This is due to the lack of jumps in risk based on the nal
observed data point [15]. Although random effects are commonly used in Bayesian disease
mapping as a way to deal with extra variation, there is a trade-off, as they might not be
well estimated when the information fed in the system is too diffused, particularly for new
emerging diseases. One of the major limitations of the analysis of these data is the issue
of under-ascertainment, whereby biases appear in the count data. This could be due to
reporting delays or unobserved infections (asymptomatics or under-reporting). In previous



Viruses 2023, 15, 325 17 of 18

work, we have examined different biases and their effects [10]. The current models adjust
for under-reporting via a rate. It is possible that this rate could vary over time, and so this
is not catered for in this analysis. The existence of differential effects within strata in the
population is also a major concern. It is possible that older age groups have a greater risk
of infection or severity of outcome. Our data do not include a stratication of this kind,
but it would be important in future applications that these strata effects are included when
making public health decisions. Another aspect of this work is that well-tting retrospective
models were used to make predictions. This emphasizes time and space-averaged model
responses. Shorter term predictive model ts (possibly based on lag windows) may be a
future extension to be examined, along with data assimilation methods.

Nonetheless, this work has proposed an extension of the SIR Bayesian disease mapping
framework to account for uncertainty in infectious surveillance. In addition, the range of
prediction should be further examined to nd the optimal predictive interval, since this
could have an effect on both the accuracy and computing resources of surveillance activities
in which timeliness is a key [17].

10. Conclusions

The approach proposed here highlights the differentials between both counterfactuals
and observed (conrmed) case counts, as well as between regions and states.

With respect to the county differences, there is strong evidence for major differences
in response to the interventions between counties in SC. Greenville county in particular
shows continual case spread during the lockdowns. In other analyses, this the continued
existence of the clusters of case counts in that county that support the conclusion that
non-compliance was common there. The particular difference that is clear appears in the
second period after T = 26, when Charleston and Richland had reduced case loadings,
whereas Greenville remained above the counterfactual throughout the three periods.

In the case of New Jersey, the clear trend was for some success during the middle
period, and then positive differentials after T = 96 across all counties, which suggests that
suppression was achieved.

Furthermore, the comparison of states is marred by the fact that the lockdowns were
of different kinds and durations. It is quite remarkable that the patterns of compliance
are markedly different, both between states and within the states. SC did not succeed
in locking down adequately, and it had no NPI in place for the second wave during the
summer of 2020. In addition, a large difference remained between the counties within
that state. Furthermore, New Jersey maintained their lockdowns and achieved a degree of
suppression, with a similar pattern across counties.

Finally, we note that the approach described here could have a sensitivity to the choice
of T. However, the choice of T is usually dened by policy decisions, and so there is only a
limited possibility to alter these times. The sensitivity to the choice of K could be apparent,
but we believe that the due to the averaging effects across time spans, this is limited.

An advantage of this method is the fact that condence intervals could be derived for
differentials and functions of differentials of various kinds. Further advantages lie in the
exibility to specify different prior distributions for model parameters, and the ease with
which the models can be tted using standard R packages (Nimble). Here, we present basic
averages that highlight differences between states and regions. In future work, we plan to
rene our summarization of the differentials to better reect the variability. In addition, we
would examine the use of different data assimilation approaches to improve the predictions.
A further future development would be to make a comparison of the current approach to
the counterfactuals estimated from different types of prediction models.
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