46 research outputs found
The EPOS multi-disciplinary Data Portal for integrated access to solid Earth science datasets
The European Plate Observing System (EPOS) is a long-term initiative aimed at integrating research infrastructures for solid Earth science in Europe. EPOS provides a sustainable, multidisciplinary user-oriented platform - the EPOS Data Portal - that facilitates data integration, access, use, and re-use, while adhering to the FAIR principles. The paper describes the key governance, community building, and technical aspects for achieving multidisciplinary data integration through the portal. It also outlines the key portal features for aggregating approximately 250 data sources from more than ten different scientific communities. The main architectural concepts underpinning the portal, namely the rich-metadata, the service-driven data provision, and the usage of semantics, are outlined. The paper discusses the challenges encountered during the creation of the portal, describes the community engagement process, and highlights the benefits to the scientific community and society. Future work includes expanding portal functionalities to include data analysis, processing, and visualization and releasing the portal as an open-source software package.publishedVersio
Identification of dust outbreaks on infrared msg-seviri data by using a Robust Satellite Technique (RST)
Dust storms are meteorological phenomena of great interest for scientific community because of their potential impact on climate changes, for the risk that may pose to human health and due to other issues as desertification processes and reduction of the agricultural production. Satellite remote sensing, thanks to global coverage, high frequency of observation and low cost data, may highly contribute in monitoring these phenomena, provided that proper detection methods are used.
In this work, the known Robust Satellite Techniques (RST) multitemporal approach, used for studying and monitoring several natural/environmental hazards, is tested on some important dust events affecting Mediterranean region in May 2004 and Arabian Peninsula in February 2008. To perform this study, data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) have been processed, comparing the generated dust maps to some independent satellite-based aerosol products. Outcomes of this work show that the RST technique can be profitably used for detecting dust outbreaks from space, providing information also about areas characterized by a different probability of dust presence. They encourage further improvements of this technique in view of its possible implementation in the framework of operational warning systems
Data integration and FAIR data management in Solid Earth Science
Integrated use of multidisciplinary data is nowadays a recognized trend in scientific research, in particular in the domain of solid Earth science where the understanding of a physical process is improved and made complete by different types of measurements – for instance, ground acceleration, SAR imaging, crustal deformation – describing a physical phenomenon. FAIR principles are recognized as a means to foster data integration by providing a common set of criteria for building data stewardship systems for Open Science. However, the implementation of FAIR principles raises issues along dimensions like governance and legal beyond, of course, the technical one. In the latter, in particular, the development of FAIR data provision systems is often delegated to Research Infrastructures or data providers, with support in terms of metrics and best practices offered by cluster projects or dedicated initiatives. In the current work, we describe the approach to FAIR data management in the European Plate Observing System (EPOS), a distributed research infrastructure in the solid Earth science domain that includes more than 250 individual research infrastructures across 25 countries in Europe. We focus in particular on the technical aspects, but including also governance, policies and organizational elements, by describing the architecture of the EPOS delivery framework both from the organizational and technical point of view and by outlining the key principles used in the technical design. We describe how a combination of approaches, namely rich metadata and service-based systems design, are required to achieve data integration. We show the system architecture and the basic features of the EPOS data portal, that integrates data from more than 220 services in a FAIR way. The construction of such a portal was driven by the EPOS FAIR data management approach, that by defining a clear roadmap for compliance with the FAIR principles, produced a number of best practices and technical approaches for complying with the FAIR principles.
Such a work, that spans over a decade but concentrates the key efforts in the last 5 years with the EPOS Implementation Phase project and the establishment of EPOS-ERIC, was carried out in synergy with other EU initiatives dealing with FAIR data. On the basis of the EPOS experience, future directions are outlined, emphasizing the need to provide i) FAIR reference architectures that can ease data practitioners and engineers from the domain communities to adopt FAIR principles and build FAIR data systems; ii) a FAIR data management framework addressing FAIR through the entire data lifecycle, including reproducibility and provenance; and iii) the extension of the FAIR principles to policies and governance dimensions.publishedVersio
RST analysis of MSG-SEVIRI TIR radiances at the time of the Abruzzo 6 April 2009 earthquake
Space-time fluctuations of Earth's emitted Thermal Infrared (TIR) radiation have been observed from satellite months to weeks before earthquakes occurrence.
The general RST approach has been proposed in order to discriminate normal (i.e. related to the change of natural factor and/or observation conditions) TIR signal fluctuations from anomalous signal transient possibly associated to earthquake occurrence. In this work RST approach is applied to the Abruzzo 6 April 2009 event (M(L)=5.8) by using for the first time MSG-SEVIRI (Meteosat Second Generation -Spinning Enhanced Visible and Infrared Imager) thermal infrared observations. A validation/confutation analysis has been performed in order to verify the presence/absence of anomalous space-time TIR transients in the presence/absence of significant seismic activity. March-April 2009 has been analyzed for validation purposes. Relatively unperturbed periods (no earthquakes with M(L)>= 5) have been taken for confutation. A specific TIR anomalies space-time persistence analysis as well as a cloud coverage distribution test have been introduced in order to eliminate artifacts and outliers both in the validation and confutation phases. Preliminary results show clear differences in TIR anomalies occurrence during the periods used for validation and confutation purposes. Quite clear TIR anomalies appear also to mark main tectonic lines related to the preparatory phases of others, low magnitude (M(L)similar to 4) earthquakes, occurred in the area
Data Management in Distributed, Federated Research Infrastructures: The Case of EPOS
Data management is a key activity when Open Data stewardship through services complying with the FAIR principles is required, as it happens in many National and European initiatives. Existing guidelines and tools facilitate the drafting of Data Management Plans by focusing on a set of common parameters or questions. In this paper we describe how data management is carried out in EPOS, the European Research Infrastructure for providing access to integrated data and services in the solid Earth domain. EPOS relies on a federated model and is committed to remain operational in the long term. In EPOS, five key dimensions were identified for the Federated Data Management, namely the management of: thematic data; e-infrastructure for data integration; community of data providers committed to data provision processes; sustainability; and policies. On the basis of the EPOS experience, which is to some extent applicable to other research infrastructures, we propose additional components that may extend the EU Horizon 2020 Data Management Guidelines template, thus comprehensively addressing the Federated Data Management in the context of distributed Research Infrastructures
Establishing Core Concepts for Information-Powered Collaborations
Science benefits tremendously from mutual exchanges of information and pooling of effort and resources. The combination of different skills and diverse knowledge is a powerful capacity, source of new intuitions and creative insights. Therefore multidisciplinary approaches can be a great opportunity to explore novel scientific horizons. Collaboration is not only an opportunity, it is essential when tackling today's global challenges by exploiting our fast growing wealth of data. In this paper we introduce the concept of Information-Powered Collaborations (IPC) — an abstraction that captures those requirements and opportunities. We propose a conceptual framework that partitions the inherent complexity of such dynamic environments and offers concrete tools and methods to thrive in the data revolution era. Such a framework promotes and enables information sharing from multiple heterogeneous sources that are independently managed. We present the results of assessing our approach as an IPC for solid-Earth sciences: the European Plate Observing System (EPOS).</p