75 research outputs found

    Growth kinetics of environmental Legionella pneumophila isolated from industrial wastewater

    Get PDF
    Wastewater treatment plants are environmental niches for Legionella pneumophila, the most commonly identified causative agent of severe pneumonia known as Legionnaire's disease. In the present study, Legionella pneumophila's concentrations were monitored in an industrial wastewater treatment plant and environmental isolates were characterized concerning their growth kinetics with respect to temperature and their inhibition by organic acids and ammonium. The results of the monitoring study showed that Legionella pneumophila occurs in activated sludge tanks operated with very different sludge retention times, 2.5 days in a complete-mix reactor, and 10 days in a membrane bioreactor, indicating that this bacterium can grow at different rates, despite the same wastewater temperature of 35 degrees C. The morphology of Legionella cells is different in both reactors; in the membrane bioreactor, the bacteria grow in clusters, while in the complete-mix reactor, filaments predominate demonstrating a faster growth rate. Legionella pneumophila concentrations in the complete-mix reactor and in the membrane bioreactor were within the range 3 x 10(1) to 4.8 x 10(3) GU/mL and 3 x 10(2) to 4.7 x 10(3) GU/mL, respectively. Environmental Legionella pneumophila SG2-14 isolates showed distinct temperature preferences. The lowest growth rate was observed at 28 degrees C, and the highest 0.34 d(-1) was obtained at 42 degrees C. The presence of high concentrations of organic acids and ammonium found in anaerobically pre-treated wastewater caused growth inhibition. Despite the increasing research efforts, the mechanisms governing the growth of Legionella pneumophila in wastewater treatment plants are still unclear. New innovative strategies to prevent the proliferation of this bacterium in wastewater are in demand

    Impact of cancer and chemotherapy on autonomic nervous system function and cardiovascular reactivity in young adults with cancer: a case-controlled feasibility study

    Get PDF
    Background Preliminary evidence suggests cancer- and chemotherapy-related autonomic nervous system (ANS) dysfunction may contribute to the increased cardiovascular (CV) morbidity- and mortality-risks in cancer survivors. However, the reliability of these findings may have been jeopardized by inconsistent participant screening and assessment methods. Therefore, good laboratory practices must be established before the presence and nature of cancer-related autonomic dysfunction can be characterized. The purpose of this study was to assess the feasibility of conducting concurrent ANS and cardiovascular evaluations in young adult cancer patients, according to the following criteria: i) identifying methodological pitfalls and proposing good laboratory practice criteria for ANS testing in cancer, and ii) providing initial physiologic evidence of autonomic perturbations in cancer patients using the composite autonomic scoring scale (CASS). Methods Thirteen patients (mixed diagnoses) were assessed immediately before and after 4 cycles of chemotherapy. Their results were compared to 12 sex- and age-matched controls. ANS function was assessed using standardized tests of resting CV (tilt-table, respiratory sinus arrhythmia and Valsalva maneuver) and sudomotor (quantitative sudomotor axon reflex test) reactivity. Cardiovascular reactivity during exercise was assessed using a modified Astrand-Ryhming cycle ergometer protocol. Our feasibility criteria addressed: i) recruitment potential, ii) retention rates, iii) pre-chemotherapy assessment potential, iv) test performance/tolerability, and v) identification and minimizing the influence of potentially confounding medication. T-tests and repeated measures ANOVAs were used to assess between- and within-group differences at baseline and follow-up. Results The overall success rate in achieving our feasibility criteria was 98.4 %. According to the CASS, there was evidence of ANS impairment at baseline in 30.8 % of patients, which persisted in 18.2 % of patients at follow-up, compared to 0 % of controls at baseline or follow-up. Conclusions Results from our feasibility assessment suggest that the investigation of ANS function in young adult cancer patients undergoing chemotherapy is possible. To the best of our knowledge, this is the first study to report CASS-based evidence of ANS impairment and sudomotor dysfunction in any cancer population. Moreover, we provide evidence of cancer- and chemotherapy-related parasympathetic dysfunction – as a possible contributor to the pathogenesis of CV disease in cancer survivors

    Kapitel 6

    No full text
    corecore