2,174 research outputs found

    Self-Complementary Structures and Their Application in Grid Amplifiers

    Get PDF
    An extension to Deschamps’s theorem for a class of 3-terminal bounded structures with one axis of symmetry is presented. For these structures, a simple relationship between the impedance matrix of the odd mode excitation of the original structure and the admittance matrix of the even mode excitation of its complement exists. Using this, a self-complementary grid amplifier is designed and the measured results are presented

    Properties of periodic arrays of symmetric complementary structuresand their application to grid amplifiers

    Get PDF
    Deschamps' theorem for n-terminal complementary structures is reviewed. An extension to Deschamps' theorem for a class of three-terminal bounded structures with one axis of symmetry is presented. It is shown that, for these structures, a simple relationship between the impedances of the odd mode of the original structure and the admittances of the even mode of the complementary structure exists, and that these modes are orthogonal. Using this, a self-complementary grid amplifier is designed and the measured results are presented

    A 100-Element MODFET Grid Amplifier

    Get PDF
    A 100-element quasi-optical amplifier is presented. The active devices are custom-fabricated modulation-doped field-effect transistors (MODFETs). Common-mode oscillations were suppressed using resistors in the input gate leads. The grid has 9 dB of gain at 10.1 GHz. The 3-dB bandwidth is 1.2 GHz. We present a model for the gain of the grid versus frequency and compare measurement with theory

    A 10 GHz Quasi-Optical Grid Amplifier Using Integrated HBT Differential Pairs

    Get PDF
    We report the fabrication and testing of a 10 GHz grid amplifier utilizing sixteen GaAs chips each containing an HBT differential pair plus integral bias/feedback resistors. The overall amplifier consists of a 4x4 array of unit cells on an RT Duroid™ board having a relative permittivity of 2.2. Each unit cell consists of an emitter-coupled differential pair at the center, an input antenna which extends horizontally in both directions from the two base leads, an output antenna which extends vertically in both directions from the two collector leads, and high inductance bias lines. In operation, the active grid array is placed between a pair of crossed polarizers. The horizontally polarized input wave passes through the input polarizer and couples to the input leads. An amplified current then flows on the vertical leads, which radiate a vertically polarized amplified signal through the output polarizer. The polarizers serve dual functions, providing both input-output isolation as well as independent impedance matching for the input and output ports. The grid thus functions essentially as a free-space beam amplifier. Calculations indicate that output powers of several watts per square centimeter of grid area should be attainable with optimized structures

    Modelling of quasi-optical arrays

    Get PDF
    A model for analyzing quasi-optical grid amplifiers based on a finite-element electromagnetic simulator is presented. This model is deduced from the simulation of the whole unit cell and takes into account mutual coupling effects. By using this model, the gain of a 10Ă—10 grid amplifier has been accurately predicted. To further test the validity of the model three passive structures with different loads have been fabricated and tested using a new focused-beam network analyzer that we developed

    Gain and Stability Models for HBT Grid Amplifiers

    Get PDF
    A 16-element heterojunction bipolar transistor (HBT) grid amplifier has been fabricated with a peak gain of 11 dB at 9.9 GHz with a 3-dB bandwidth of 350 MHz. We report a gain analysis model for the grid and give a comparison of the measurement and theory. The measured patterns show the evidence of a common-mode oscillation. A stability model for the common-mode oscillation is developed. Based on the stability model, a lumped capacitor gives suitable phase shift of the circular function, thus stabilizing the grid. A second 18-element grid was fabricated, using this theory, with improved stability

    A 6.5 GHz-11.5 GHz source using a grid amplifier with a twist reflector

    Get PDF
    The authors have constructed and tested an oscillator using a grid amplifier with external feedback from a twist reflector. The twist reflector serves two functions; it changes the output polarization to match the input, and its position sets the feedback phase. This permits a wider tuning range than has been possible with previous grid oscillators. The source could be continuously tuned from 8.2 GHz to 11.0 GHz by moving the twist reflector. By moving the polarizer and mirror in the twist reflector independently, a 1.8-to-1 frequency range from 6.5 GHz to 11.5 GHz was achieved. The peak effective radiated power was 6.3 W at 9.9 GHz

    Modeling and performance of a 100-element pHEMT grid amplifier

    Get PDF
    A 100-element hybrid grid amplifier has been fabricated, The active devices in the grid are custom-made pseudomorphic high electron mobility transistor (pHEMT) differential-pair chips. We present a model for gain analysis and compare measurements with theory. The grid includes stabilizing resistors in the gate. Measurements show the grid has a peak gain of 10 db when tuned for 10 GHz and a gain of 12 dB when tuned for 9 GHz. The maximum 3-dB bandwidth is 15% at 9 GHz. The minimum noise figure is 3 dB. The maximum saturated output power is 3.7 W, with a peak power-added efficiency of 12%. These results area significant improvement over previous grid amplifiers based on heterojunction bipolar transistors (HBT's)
    • …
    corecore