2 research outputs found

    Fast, Ratiometric FRET from Quantum Dot Conjugated Stabilized Single Chain Variable Fragments for Quantitative Botulinum Neurotoxin Sensing

    No full text
    Botulinum neurotoxin (BoNT) presents a significant hazard under numerous realistic scenarios. The standard detection scheme for this fast-acting toxin is a lab-based mouse lethality assay that is sensitive and specific, but slow (āˆ¼2 days) and requires expert administration. As such, numerous efforts have aimed to decrease analysis time and reduce complexity. Here, we describe a sensitive ratiometric fluorescence resonance energy transfer scheme that utilizes highly photostable semiconductor quantum dot (QD) energy donors and chromophore conjugation to compact, single chain variable antibody fragments (scFvs) to yield a fast, fieldable sensor for BoNT with a 20ā€“40 pM detection limit, toxin quantification, adjustable dynamic range, sensitivity in the presence of interferents, and sensing times as fast as 5 min. Through a combination of mutations, we achieve stabilized scFv denaturation temperatures of more than 60 Ā°C, which bolsters fieldability. We also describe adaptation of the assay into a microarray format that offers persistent monitoring, reuse, and multiplexing

    <i>Bacillus anthracis</i> Inosine 5ā€²-Monophosphate Dehydrogenase in Action: The First Bacterial Series of Structures of Phosphate Ionā€‘, Substrateā€‘, and Product-Bound Complexes

    No full text
    Inosine 5ā€²-monophosphate dehydrogenase (IMPDH) catalyzes the first unique step of the GMP branch of the purine nucleotide biosynthetic pathway. This enzyme is found in organisms of all three kingdoms. IMPDH inhibitors have broad clinical applications in cancer treatment, as antiviral drugs and as immunosuppressants, and have also displayed antibiotic activity. We have determined three crystal structures of <i>Bacillus anthracis</i> IMPDH, in a phosphate ion-bound (termed ā€œapoā€) form and in complex with its substrate, inosine 5ā€²-monophosphate (IMP), and product, xanthosine 5ā€²-monophosphate (XMP). This is the first example of a bacterial IMPDH in more than one state from the same organism. Furthermore, for the first time for a prokaryotic enzyme, the entire active site flap, containing the conserved Arg-Tyr dyad, is clearly visible in the structure of the apoenzyme. Kinetic parameters for the enzymatic reaction were also determined, and the inhibitory effect of XMP and mycophenolic acid (MPA) has been studied. In addition, the inhibitory potential of two known <i>Cryptosporidium parvum</i> IMPDH inhibitors was examined for the <i>B. anthracis</i> enzyme and compared with those of three bacterial IMPDHs from <i>Campylobacter jejuni</i>, <i>Clostridium perfringens</i>, and <i>Vibrio cholerae</i>. The structures contribute to the characterization of the active site and design of inhibitors that specifically target <i>B. anthracis</i> and other microbial IMPDH enzymes
    corecore