5 research outputs found

    Shelf-life stability of Asparagopsis bromoform in oil and freeze-dried powder

    Get PDF
    The idea of delivering bromoform from Asparagopsis using edible oil has gained momentum recently due to the improved processing time and that it is already a feed that many livestock producers use. The stability of bromoform in oil compared to freeze-dried product is still not well understood. To fill this gap, a systematic study was carried out to determine the effects of storage temperatures (40 °C, 25 °C, 4 °C and -20 °C), fluorescent light and exposure to open air, on the retention of bromoform in freeze-dried Asparagopsis (FD-Asp) and Asparagopsis oil (Asp-Oil) over 24-week period. In the absence of fluorescent light, Asp-Oil was a more effective way to preserve bromoform compared to FD-Asp due to either no change or higher Asp-Oil bromoform content (storage temperature dependent) after 24-week storage. Under the same conditions, FD-Asp bromoform content decreased by 74% at 40 °C, 53% at 25 °C, 6% at 4 °C, and no change of FD-Asp bromoform content at -20 °C. The presence of fluorescent light negatively affected Asp-Oil bromoform content at both 25 °C and 40 °C while the effect was insignificant on FD-Asp. The exposure of Asp-Oil to open air resulted in the decrease of bromoform content to below quantification limit (0.18 mg g(-1)) on week 8 for 40 °C sample and on week 16 for 25 °C sample. This study provides empirical evidence on the stabilising effect of oil in preserving bromoform extracted from Asparagopsis, confirming it is a more attractive medium to deliver bromoform compared to the freeze-dried powder form

    Enteric methane mitigation interventions

    No full text
    Mitigation of enteric methane (CH4) presents a feasible approach to curbing agriculture's contribution to climate change. One intervention for reduction is dietary reformulation, which manipulates the composition of feedstuffs in ruminant diets to redirect fermentation processes toward low CH4 emissions. Examples include reducing the relative proportion of forages to concentrates, determining the rate of digestibility and passage rate from the rumen, and dietary lipid inclusion. Feed additives present another intervention for CH4 abatement and are classified based on their mode of action. Through inhibition of key enzymes, 3-nitrooxypropanol (3-NOP) and halogenated compounds directly target the methanogenesis pathway. Rumen environment modifiers, including nitrates, essential oils, and tannins, act on the conditions that affect methanogens and remove the accessibility of fermentation products needed for CH4 formation. Low CH4-emitting animals can also be directly or indirectly selected through breeding interventions, and genome-wide association studies are expected to provide efficient selection decisions. Overall, dietary reformulation and feed additive inclusion provide immediate and reversible effects, while selective breeding produces lasting, cumulative CH4 emission reductions

    Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers.

    Get PDF
    The red macroalgae (seaweed) Asparagopsis spp. has shown to reduce ruminant enteric methane (CH4) production up to 99% in vitro. The objective of this study was to determine the effect of Asparagopsis taxiformis on CH4 production (g/day per animal), yield (g CH4/kg dry matter intake (DMI)), and intensity (g CH4/kg ADG); average daily gain (ADG; kg gain/day), feed conversion efficiency (FCE; kg ADG/kg DMI), and carcass and meat quality in growing beef steers. Twenty-one Angus-Hereford beef steers were randomly allocated to one of three treatment groups: 0% (Control), 0.25% (Low), and 0.5% (High) A. taxiformis inclusion based on organic matter intake. Steers were fed 3 diets: high, medium, and low forage total mixed ration (TMR) representing life-stage diets of growing beef steers. The Low and High treatments over 147 days reduced enteric CH4 yield 45 and 68%, respectively. However, there was an interaction between TMR type and the magnitude of CH4 yield reduction. Supplementing low forage TMR reduced CH4 yield 69.8% (P <0.01) for Low and 80% (P <0.01) for High treatments. Hydrogen (H2) yield (g H2/DMI) increased (P <0.01) 336 and 590% compared to Control for the Low and High treatments, respectively. Carbon dioxide (CO2) yield (g CO2/DMI) increased 13.7% between Control and High treatments (P = 0.03). No differences were found in ADG, carcass quality, strip loin proximate analysis and shear force, or consumer taste preferences. DMI tended to decrease 8% (P = 0.08) in the Low treatment and DMI decreased 14% (P <0.01) in the High treatment. Conversely, FCE tended to increase 7% in Low (P = 0.06) and increased 14% in High (P <0.01) treatment compared to Control. The persistent reduction of CH4 by A. taxiformis supplementation suggests that this is a viable feed additive to significantly decrease the carbon footprint of ruminant livestock and potentially increase production efficiency
    corecore