13 research outputs found

    Effects of chronic hypoxia on myocardial gene expression and function

    No full text
    Abstract Molecular oxygen is a prerequisite for essential metabolic processes in multicellular organisms. However, the supply of oxygen can be disturbed and tissue aerobic metabolism becomes compromised in several pathophysiological conditions. In prolonged hypoxia, cells initiate cell type-specific adaptation processes, which are typically mediated by alterations in gene expression. Changes are mainly driven by a transcription factor called hypoxia-inducible factor 1 (HIF-1). Heart muscle is a highly oxidative tissue and HIF-1 activation turns on myocardial adaptation mechanisms for enhanced survival in oxygen-deprived conditions. The aim of this study was to characterize myocardial gene expression changes during chronic hypoxia and couple the adaptational changes to cardiomyocyte function. The role of hypoxia and HIF-1 activation was studied by using in vitro mouse and rat heart cell culture models, tissue perfusions and in vivo infarction models. In this study, apelin, sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) and G protein-coupled receptor 35 (GPR35) were characterized as novel functionally important myocardial HIF-1 target genes. Apelin and GPR35 were induced in hypoxia, while SERCA2a expression was reduced HIF-1 dependently. HIF-1 activation also altered cardiac myocyte contractility through modulation of SERCA2a and GPR35 expression, leading to impairment of the cellular calcium metabolism. Reduced contractility was suggested to serve as an adaptive mechanism for reduced aerobic ATP production in hypoxic conditions. This study presents novel information about the plasticity of myocardial adaptation to prolonged hypoxia. The role of a conserved transcription factor, HIF-1, was shown to be essential in the adaptation process in the myocardial cells.TiivistelmĂ€ RiittĂ€vĂ€ hapensaanti on vĂ€lttĂ€mĂ€töntĂ€ monisoluisten eliöiden elintoiminnoille. Hapensaanti voi kuitenkin hĂ€iriintyĂ€ erilaisissa tautitiloissa, jolloin happea kĂ€yttĂ€vĂ€t prosessit estyvĂ€t. Hapenpuutteen (hypoksia) pitkittyessĂ€ elimistön solut aloittavat sopeutumisen tilanteeseen muuttamalla toimintaansa geenien ilmentymismuutosten kautta. Adaptaatiota ohjaa pÀÀasiassa hypoksia-indusoituva tekijĂ€ 1 (HIF-1). SydĂ€n kĂ€yttÀÀ runsaasti happea energiantuotannossaan. Hapenpuutteen aikana HIF-1-transkriptiotekijĂ€ muuttaa sydĂ€men geenien ilmentymistĂ€ siten, ettĂ€ sydĂ€nsolut selviĂ€vĂ€t paremmin happivajaissa olosuhteissa. TĂ€mĂ€n tutkimuksen tavoitteena oli mÀÀrittÀÀ sydĂ€men geenien ilmentymisen hapenpuutevasteita ja yhdistÀÀ muutokset sydĂ€nsolujen toiminnallisiin muutoksiin. Hapenpuutteen ja HIF-1:n merkitystĂ€ sopeutumisessa tutkittiin kĂ€yttĂ€en malleina rotan ja hiiren sydĂ€nsoluviljelmiĂ€, in vitro-kudosperfuusiomalleja sekĂ€ in vivo-sydĂ€ninfarktimalleja. TĂ€ssĂ€ työssĂ€ havaittiin apeliinin, sarkoplasmisen kalvoston Ca2+-ATPaasin (SERCA2a) sekĂ€ G-proteiinikytketyn reseptori 35:n olevan toiminnallisesti tĂ€rkeitĂ€ HIF-1:n sÀÀtelemiĂ€ geenejĂ€ sydĂ€messĂ€. Apeliinin sekĂ€ GPR35:n ilmentyminen lisÀÀntyi hypoksian aikana, mutta SERCA2a:n ilmentyminen sen sijaan vĂ€heni HIF-1 –aktivaation seurauksena. HIF-1 –aktivaation osoitettiin myös vĂ€hentĂ€vĂ€n sydĂ€nsolujen supistustoimintaa muuttuneiden SERCA2a:n ja GPR35:n ilmentymisten kautta. Heikentynyt supistustoiminta sopeuttaa soluja vĂ€hentyneeseen aerobiseen ATP:n tuottoon hapenpuutteen aikana. TĂ€mĂ€ tutkimus antaa lisĂ€tietoa sydĂ€men sopeutumiskyvyn mukautumisesta pitkittyneeseen hapenpuutteeseen. LisĂ€ksi tutkimus osoittaa HIF-1:n roolin olevan oleellinen myös sydĂ€nsolujen hypoksia-adaptaatioprosesseissa

    Gap junctional communication is involved in differentiation of osteoclasts from bone marrow and peripheral blood monocytes

    No full text
    Abstract Aims: The aim of the study was to compare the influence of gap junctional communication (GJC) in osteoclastogenesis from bone marrow (BM) and peripheral blood (PB) monocytes. These widely used sources differ in purity, since BM cultures contain a significant number of stromal cells. We studied whether stimulation of GJC in BM monocyte/stromal cell cultures differs from the effect in pure PB monocyte cultures. We compared the differentiation also in acidosis, which is a known inducer of bone resorption. Main methods:: Human BM and PB monocytes were isolated from BM aspirates or whole blood samples. The cells were cultured on human bone slices with osteoclastogenic growth factors and a GJC modulator, antiarrhythmic peptide AAP10, at physiological and acidic pH. Key findings:: Both BM and PB monocytes differentiated into osteoclasts. Acidosis increased resorption in both cultures but stimulated cell fusion only in BM cultures, which demonstrates the role of stromal cells in osteoclastogenesis. At physiological pH, AAP10 increased the number of multinuclear cells and bone resorption in both BM and PB cultures indicating that GJC is involved in differentiation in both of these osteoclastogenesis assays. Interestingly, in PB cultures at pH 6.5 the stimulation of GJC with AAP10 inhibited both osteoclastogenesis and bone resorption suggesting a different role of GJC in BM and PB monocytes at stressed environment. Significance: The study is conducted with primary human tissue samples and adds new knowledge on factors affecting osteoclastogenesis from different monocyte sources

    Human phytanoyl-CoA dioxygenase domain-containing 1 (PHYHD1) is a putative oxygen sensor associated with RNA and carbohydrate metabolism

    No full text
    Abstract Human phytanoyl-CoA dioxygenase domain-containing 1 (PHYHD1) is a 2-oxoglutarate (2OG)-dependent dioxygenase implicated in Alzheimer’s disease, some cancers, and immune cell functions. The substrate, kinetic and inhibitory properties, function and subcellular localization of PHYHD1 are unknown. We used recombinant expression and enzymatic, biochemical, biophysical, cellular and microscopic assays for their determination. The apparent Km values of PHYHD1 for 2OG, FeÂČâș and O₂ were 27, 6 and > 200 Όm, respectively. PHYHD1 activity was tested in the presence of 2OG analogues, and it was found to be inhibited by succinate and fumarate but not R-2-hydroxyglutarate, whereas citrate acted as an allosteric activator. PHYHD1 bound mRNA, but its catalytic activity was inhibited upon interaction. PHYHD1 was found both in the nucleus and cytoplasm. Interactome analyses linked PHYHD1 to cell division and RNA metabolism, while phenotype analyses linked it to carbohydrate metabolism. Thus, PHYHD1 is a potential novel oxygen sensor regulated by mRNA and citrate

    Nhlrc2 is crucial during mouse gastrulation

    No full text
    Abstract The loss of NHL repeat containing 2 (Nhlrc2) leads to early embryonic lethality in mice, but the exact timing is currently unknown. In this study, we determined the time of lethality for Nhlrc2 knockout (KO), C57BL/6NCrl-Nhlrc2tm1a(KOMP)Wtsi/Oulu, embryos and the in situ expression pattern of Nhlrc2 based on LacZ reporter gene expression during this period. Nhlrc2 KO preimplantation mouse embryos developed normally after in vitro fertilization. Embryonic stem (ES) cells established from KO blastocysts proliferated normally despite a complete loss of the NHLRC2 protein. Nhlrc2 KO embryos from timed matings implanted and were indistinguishable from their wildtype littermates on embryonic day (E) 6.5. On E7.5, Nhlrc2 KO embryo development was arrested, and on E8.5, only 6% of the genotyped embryos were homozygous for the Nhlrc2tm1a(KOMP)Wtsi allele. Nhlrc2 KO E8.5 embryos showed limited embryonic or extraembryonic tissue differentiation and remained at the cylinder stage. Nhlrc2 expression was ubiquitous but strongest in the epiblast/ectoderm and extraembryonic ectoderm on E6.5 and E7.5. NHLRC2 is essential for early postimplantation development, and its loss leads to failed gastrulation and amniotic folding in mice. Future studies on the evolutionarily conserved NHLRC2 will provide new insights into the molecular pathways involved in the early steps of postimplantation development

    Co-encapsulation of probiotic Lactobacillus acidophilus and Reishi medicinal mushroom (Ganoderma lingzhi) extract in moist calcium alginate beads

    No full text
    Abstract Probiotic L. acidophilus La-14 cells were co-encapsulated with Ganoderma lingzhi extract to prolong the viability of the cells under simulated gastrointestinal (SGI) condition and to protect the active ingredients of Reishi mushroom during the storage period. Combinations of distinctive reagents (sodium alginate, chitosan, maltose, Hydroxyethyl-cellulose (HEC), hydroxypropyl methylcellulose (HPMC), and calcium lactate) were tested. Optimal double layer Ca-alginate hydrogel beads were fabricated with significantly improved characteristics. The incorporation of maltose significantly decreases the release rate of mushrooms’ phenolics, antioxidants, and ÎČ-glucan during the storage time. Significant improvement in probiotic cells viability under SGI condition has been found and confirmed by confocal laser microscopy in maltose containing double layer coated calcium alginate beads variants. The encapsulation of newly formulated prebiotic Reishi extract and probiotic L. acidophilus is creating a new potential food application for such medicinal mushrooms and natural products with unpleasant taste upon oral consumption

    Reduced bone mass in collagen prolyl 4-hydroxylase P4ha1+/-; P4ha2-/- compound mutant mice

    No full text
    Abstract Proper deposition of the extracellular matrix and its major components, the collagens, is essential for endochondral ossification and bone mass accrual. Collagen prolyl 4-hydroxylases (C-P4Hs) hydroxylate proline residues in the -X-Pro-Gly- repeats of all known collagen types. Their product, 4-hydroxyproline, is essential for correct folding and thermal stability of the triple-helical collagen molecules in physiological body temperatures. We have previously shown that inactivation of the mouse P4ha1 gene, which codes for the catalytic α subunit of the major C-P4H isoform, is embryonic lethal, whereas inactivation of the P4ha2 gene produced only a minor phenotype. Instead, mice with a haploinsufficiency of the P4ha1 gene combined with a homozygous deletion of the P4ha2 gene present with a moderate chondrodysplasia due to transient cell death of the growth plate chondrocytes. Here, to further characterize the bone phenotype of the P4ha1+/−; P4ha2−/− mice, we have carried out gene expression analyses at whole-tissue and single-cell levels, biochemical analyses, microcomputed tomography, histomorphometric analyses, and second harmonic generation microscopy to show that C-P4H α subunit expression peaks early and that the C-P4H deficiency leads to reduced collagen amount, a reduced rate of bone formation, and a loss of trabecular and cortical bone volume in the long bones. The total osteoblast number in the proximal P4ha1+/−; P4ha2−/− tibia and the C-P4H activity in primary P4ha1+/−; P4ha2−/− osteoblasts were reduced, whereas the population of osteoprogenitor colony-forming unit fibroblasts was increased in the P4ha1+/−; P4ha2−/− marrow. Thus, the P4ha1+/−; P4ha2−/− mouse model recapitulates key aspects of a recently recognized congenital connective tissue disorder with short stature and bone dysplasia caused by biallelic variants of the human P4HA1 gene. Altogether, the data demonstrate the allele dose-dependent importance of the C-P4Hs to the developing organism and a threshold effect of C-P4H activity in the proper production of bone matrix

    Transmembrane prolyl 4-hydroxylase is a novel regulator of calcium signaling in astrocytes

    No full text
    Abstract Prolyl 4-hydroxylases (P4Hs) have vital roles in regulating collagen synthesis and hypoxia response. A transmembrane P4H (P4H-TM) is a recently identified member of the family. Biallelic loss of function P4H-TM mutations cause a severe autosomal recessive intellectual disability syndrome in humans, but functions of P4H-TM are essentially unknown at cellular level. Our microarray data on P4h-tm−/− mouse cortexes where P4H-TM is abundantly expressed indicated expression changes in genes involved in calcium signaling and expression of several calcium sequestering ATPases was upregulated in P4h-tm−/− primary mouse astrocytes. Cytosolic and intraorganellar calcium imaging of P4h-tm−/− cells revealed that receptor-operated calcium entry (ROCE) and store-operated calcium entry (SOCE) and calcium re-uptake by mitochondria were compromised. HIF1, but not HIF2, was found to be a key mediator of the P4H-TM effect on calcium signaling. Furthermore, total internal reflection fluorescence (TIRF) imaging showed that calcium agonist-induced gliotransmission was attenuated in P4h-tm−/− astrocytes. This phenotype was accompanied by redistribution of mitochondria from distal processes to central parts of the cell body and decreased intracellular ATP content. Our data show that P4H-TM is a novel regulator of calcium dynamics and gliotransmission

    Trisk 95 as a novel skin mirror for normal and diabetic systemic glucose level

    No full text
    Abstract Developing trustworthy, cost effective, minimally or non-invasive glucose sensing strategies is of great need for diabetic patients. In this study, we used an experimental type I diabetic mouse model to examine whether the skin would provide novel means for identifying biomarkers associated with blood glucose level. We first showed that skin glucose levels are rapidly influenced by blood glucose concentrations. We then conducted a proteomic screen of murine skin using an experimental in vivo model of type I diabetes and wild-type controls. Among the proteins that increased expression in response to high blood glucose, Trisk 95 expression was significantly induced independently of insulin signalling. A luciferase reporter assay demonstrated that the induction of Trisk 95 expression occurs at a transcriptional level and is associated with a marked elevation in the Fluo-4AM signal, suggesting a role for intracellular calcium changes in the signalling cascade. Strikingly, these changes lead concurrently to fragmentation of the mitochondria. Moreover, Trisk 95 knockout abolishes both the calcium flux and the mitochondrial phenotype changes indicating dependency of glucose flux in the skin on Trisk 95 function. The data demonstrate that the skin reacts robustly to systemic blood changes, and that Trisk 95 is a promising biomarker for a glucose monitoring assembly

    PHD2 deletion in endothelial or arterial smooth muscle cells reveals vascular cell type-specific responses in pulmonary hypertension and fibrosis

    No full text
    Abstract Hypoxia plays an important regulatory role in the vasculature to adjust blood flow to meet metabolic requirements. At the level of gene transcription, the responses are mediated by hypoxia-inducible factor (HIF) the stability of which is controlled by the HIF prolyl 4-hydroxylase-2 (PHD2). In the lungs hypoxia results in vasoconstriction, however, the pathophysiological relevance of PHD2 in the major arterial cell types; endothelial cells (ECs) and arterial smooth muscle cells (aSMCs) in the adult vasculature is incompletely characterized. Here, we investigated PHD2-dependent vascular homeostasis utilizing inducible deletions of PHD2 either in ECs (Phd2∆ECi) or in aSMCs (Phd2∆aSMC). Cardiovascular function and lung pathologies were studied using echocardiography, Doppler ultrasonography, intraventricular pressure measurement, histological, ultrastructural, and transcriptional methods. Cell intrinsic responses were investigated in hypoxia and in conditions mimicking hypertension-induced hemodynamic stress. Phd2∆ECi resulted in progressive pulmonary disease characterized by a thickened respiratory basement membrane (BM), alveolar fibrosis, increased pulmonary artery pressure, and adaptive hypertrophy of the right ventricle (RV). A low oxygen environment resulted in alterations in cultured ECs similar to those in Phd2∆ECi mice, involving BM components and vascular tone regulators favoring the contraction of SMCs. In contrast, Phd2∆aSMC resulted in elevated RV pressure without alterations in vascular tone regulators. Mechanistically, PHD2 inhibition in aSMCs involved actin polymerization -related tension development via activated cofilin. The results also indicated that hemodynamic stress, rather than PHD2-dependent hypoxia response alone, potentiates structural remodeling of the extracellular matrix in the pulmonary microvasculature and respiratory failure

    Tumor suppressor MCPH1 regulates gene expression profiles related to malignant conversion and chromosomal assembly

    No full text
    Abstract Strong inherited predisposition to breast cancer is estimated to cause about 5–10% of all breast cancer cases. As the known susceptibility genes, such as BRCA1 and BRCA2, explain only a fraction of this, additional predisposing genes and related biological mechanisms are actively being searched for. We have recently identified a recurrent MCPH1 germline mutation, p.Arg304ValfsTer3, as a breast cancer susceptibility allele. MCPH1 encodes a multifunctional protein involved in maintenance of genomic integrity and it is also somatically altered in various cancer types, including breast cancer. Additionally, biallelic MCPH1 mutations are causative for microcephaly and at cellular level premature chromosome condensation. To study the molecular mechanisms leading to cancer predisposition and malignant conversion, here we have modeled the effect of MCPH1 p.Arg304ValfsTer3 mutation using gene‐edited MCF10A breast epithelial cells. As a complementary approach, we also sought for additional potential cancer driver mutations in MCPH1 p.Arg304ValfsTer3 carrier breast tumors. We show that mutated MCPH1 de‐regulates transcriptional programs related to invasion and metastasis and leads to downregulation of histone genes. These global transcriptional changes are mirrored by significantly increased migration and invasion potential of the cells as well as abnormal chromosomal condensation both before and after mitosis. These findings provide novel molecular insights to MCPH1 tumor suppressor functions and establish a role in regulation of transcriptional programs related to malignant conversion and chromosomal assembly. The MCPH1 p.Arg304ValfsTer3 carrier breast tumors showed recurrent tumor suppressor gene TP53 mutations, which were also significantly over‐represented in breast tumors with somatically inactivated MCPH1
    corecore