2 research outputs found

    Privacy-preserving iVector-based speaker verification

    Get PDF
    This work introduces an efficient algorithm to develop a privacy-preserving (PP) voice verification based on iVector and linear discriminant analysis techniques. This research considers a scenario in which users enrol their voice biometric to access different services (i.e., banking). Once enrolment is completed, users can verify themselves using their voice-print instead of alphanumeric passwords. Since a voice-print is unique for everyone, storing it with a third-party server raises several privacy concerns. To address this challenge, this work proposes a novel technique based on randomisation to carry out voice authentication, which allows the user to enrol and verify their voice in the randomised domain. To achieve this, the iVector based voice verification technique has been redesigned to work on the randomised domain. The proposed algorithm is validated using a well known speech dataset. The proposed algorithm neither compromises the authentication accuracy nor adds additional complexity due to the randomisation operations

    User collusion avoidance scheme for privacy-preserving decentralized key-policy attribute-based encryption

    Get PDF
    Decentralized attribute-based encryption (ABE) is a variant of multi-authority based ABE whereby any attribute authority (AA) can independently join and leave the system without collaborating with the existing AAs. In this paper, we propose a user collusion avoidance scheme which preserves the user's privacy when they interact with multiple authorities to obtain decryption credentials. The proposed scheme mitigates the well-known user collusion security vulnerability found in previous schemes. We show that our scheme relies on the standard complexity assumption (decisional bilienar Deffie-Hellman assumption). This is contrast to previous schemes which relies on non-standard assumption (q-decisional Diffie-Hellman inversion)
    corecore