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Privacy-preserving iVector based Speaker
Verification

Yogachandran Rahulamathavan, Kunaraj R Sutharsini, Indranil Ghosh Ray,
Rongxing Lu, and Muttukrishnan Rajarajan

Abstract—This work introduces an efficient algorithm to
develop a privacy-preserving (PP) voice verification based on
iVector and linear discriminant analysis techniques. This research
considers a scenario in which users enrol their voice biometric
to access different services (i.e., banking). Once enrolment is
completed, users can verify themselves using their voice-print
instead of alphanumeric passwords. Since a voice-print is unique
for everyone, storing it with a third-party server raises several
privacy concerns. To address this challenge, this work proposes
a novel technique based on randomisation to carry out voice au-
thentication, which allows the user to enrol and verify their voice
in the randomised domain. To achieve this, the iVector based
voice verification technique has been redesigned to work on the
randomised domain. The proposed algorithm is validated using
a well known speech dataset. The proposed algorithm neither
compromises the authentication accuracy nor adds additional
complexity due to the randomisation operations.

Index Terms—Privacy, security, speech, iVector, authentication,
random domain.

I. INTRODUCTION

TRADITIONAL methods of authentication including pass-
words, PINs, and memorable words can be easily forgot-

ten, lost, guessed, stolen, or shared. However, authentication
using anatomical traits such as fingerprint, face, palm print, iris
and voice are very difficult to forge since they are physically
linked to the user. Thus, biometric systems impart higher levels
of security and have seen a rapid proliferation in a wide variety
of government and commercial applications around the world
in the last two decades [2]. However, several security and
privacy challenges deter the public confidence in adopting
biometric systems. Few of them are described below:

Non-revocability: Unlike the alphanumeric passwords, it is
impossible to revoke the biometric data once its compromised;
hence, once lost the same biometric cannot be reused.
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Privacy compromise: Inappropriate use of biometric data
may breach the user’s privacy directly and indirectly. These
privacy breaches can be categorised into three types as below:
• Biometric data privacy breach: The raw biometric data

of the user can be recovered from the stored templates
if there are no protections [2]. For example, many
fingerprint-based systems use minutiae features extracted
from reference fingerprint images. It is possible to re-
construct the original fingerprint image from the stored
minutiae.

• Information privacy breach: If someone enrols the same
biometric data for different services then the biometric
templates in all of these systems are identical. This will
allow an adversary to use the templates from one system
to gain access to another system.

• Identity privacy breach: Since the biometric templates
used for different services are reasonably similar, there is
a possibility for linkability based attacks.

Several cryptographic techniques have been proposed in liter-
ature to overcome the above security and privacy challenges
(see Section II). The existing works modify various biometric
algorithms designed for different types biometrics data. To the
best of our knowledge, the work proposed in this paper is
the first PP work that redesigns the state-of-the-art iVector
based voice verification technique without compromising the
accuracy for a negligible computational overhead [1]. The
proposed scheme has been validated using the well known
TIMIT speech corpus [6]. Theoretical proofs have been pro-
vided to validate the privacy and security of the proposed
solution. Rigorous experiments show that the scheme mitigates
the above issues without compromising the accuracy.

The rest of this paper is organised as follows: The related
work is discussed in Section II. The speaker verification
model without privacy restriction, and mathematical tools and
notations necessary for the proposed algorithm are given in
Section III. In Section IV, we redesign the iVector based
speaker verification model using randomisation technique and
the associated performance results are given in Section V. The
security and privacy analysis is given in Section VI followed
by conclusions are discussions.

II. RELATED WORKS

The use of voice verification over the Internet is becoming
very popular. For example, several financial institutes are using
speaker verification as a mean to verify its customers. At the
same time, recent changes in privacy legislation i.e., GDPR
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in Europe, are enforcing organisations to provide sufficient
privacy guarantee when they use, process and store customer
data. Since voice data is unique, the privacy of the voice data
should be guaranteed.

This requires a novel voice verification solution with high
accuracy and privacy guarantee. PP research addresses this
challenge by balancing privacy and usability of data. When
it comes to a PP solution, it is all about transforming the
existing algorithm to process the inputs when the inputs are
either encrypted via homomorphic encryption [3], [5], [7]–[10]
or transformed via salting [11], [17].

The aim of homomorphic encryption based PP solutions is
protecting the privacy of the input data. However, the existing
works redesign different machine learning algorithms i.e., face
recognition based on the principal component analysis [7],
facial expression recognition based on the linear discriminant
analysis [10], multi-class problem based on support vector
machine [5], [8], [9], are the few to mention here. These
solutions achieve the same accuracy as their corresponding
traditional algorithms subject to hefty computational overhead
[3], [10].

On the other hand, salting based cancellable biometric
solutions increase the computation speed significantly com-
pared to the homomorphic encryption-based solutions [11],
[17]. However, these solutions either decrease the accuracy or
privacy.

In the domain of voice biometric, there are only a few
notable PP voice verification works exist [3], [11], [14], [16],
[17]. Smaragdis and Shashanka proposed the first applica-
tion of secure multi-party computation (SMC) concepts for
privacy-constrained speech technology [14]. In their work,
they realised secure speech recognition using the hidden
Markov model (HMM) and a generalised version of the Paillier
public-key scheme, which allowed training and classification
between multiple parties and achieved perfect accuracy.

Pathak et. al redesigned the Gaussian Mixture Model
(GMM) based speaker recognition [3] to achieve a similar
privacy goal. This work relies on homomorphic cryptosystems
such as BGN and Paillier encryption. This work has shown a
proof-of-concept of PP speaker recognition without compro-
mising the accuracy. However, the shortcoming of the above
cryptographic approaches [3], [14] is that far too much time
is spent on the encryption, which makes it impractical for real
applications i.e., [3] requires few minutes for authentication.

In order to overcome the heavy computation that is involved
with the above homomorphic encryption schemes, string-
matching frameworks were proposed in [11], [17]. These
schemes convert the speech input represented by the super-
vectors to bit strings using locality sensitive hashing (LSH) and
counted the exact matches [11], [17]. Since it is easy to per-
form string comparison with privacy, the method proves to be
more efficient; however, it lacks accuracy with EER=11.86%.

To the best of our knowledge, one and only work that
proposes a PP solution for iVector based speaker verification
is [16]. The work [16] presented a secure binary embedding
(SBE) which is a hashing scheme in an attempt to enable
privacy for iVector based speaker recognition. The work [16]
uses a hashing technique where similar templates are placed

in close proximity in the hash domain. Due to the inherent
nature of hashing, the verification accuracy obtained in [16]
is much lower than the true accuracy (when the traditional
iVector solution provides EER = 1%, the solution [16] provides
EER = 20% when the privacy is high).

In contrast to all the above works, the proposed work in this
paper uses randomisation technique from information theory
which is neither computationally inefficient nor compromises
the privacy. This work not only provides the speed neces-
sary for real-time computation but also provides information-
theoretical privacy and highest possible accuracy. This solution
is significantly advanced than the existing solution in terms of
accuracy, privacy and speed. Note that the proposed solution
can be applied to variants of ivector based speaker verification
solutions that calculates scores using cosine distances. If a so-
lution such as PLDA based ivector [19] uses different scoring
method then the proposed solution may not be sufficient.

III. SPEAKER RECOGNITION BASED ON IVECTOR AND
COSINE DISTANCE SCORING

Recently Dehak et. al proposed a pioneering work, namely
iVector, for voice verification [1]. The iVector model generates
a low-dimensional speaker-and-channel dependent space using
factor analysis [1]. Serveral channel compensation techniques
such as, within-class covariance normalisation (WCCN), linear
discriminant analysis (LDA), and nuisance attribute projec-
tion (NAP), were applied on this low dimensional space to
remove the channel dependent noise [1]. Through rigorous
experiments, Dehak et. al concluded that iVector and LDA
based speaker verification outperforms the other competitive
techniques [1].

Hence, as discussed in Section I, a PP version of ivector
model is developed in this paper. The aim of the proposed
work is to achieve privacy within user-server settings with-
out reducing the accuracy subject to negligible complexity
overhead. The following section briefly describes the original
speaker verification model [1].

The work [1] mainly constitutes of two parts: 1) iVector
feature extraction and speaker model building and 2) speaker
verification. The first part extracts features of voice using
several techniques i.e., Mel frequency cepstral coefficients
(MFCC), Gaussian mixture model (GMM), Universal back
ground model (UBM), and maximum a posterior adaptation
(MAP) [4]. The feature extraction step is followed by a speaker
model building step i.e., obtaining matrix R in the equation
(2) below. Once R is obtained, voice feature of a user, called
ivector, wtarget, can be enrolled in the server. Refer [1] for
additional technical details of the first part.

During the second part (i.e., speaker verification), the user is
required to send a voice feature vector wtest to the server. The
work [1] uses cosine distance scoring for speaker verification.
The cosine distance scoring computes the value of the cosine
kernel between the target speaker ivector wtarget ∈ Rd×1 and
the test ivector wtest ∈ Rd×1 as a decision score [1]

score(wtarget,wtest) =
< wtarget,wtest >

||wtarget||||wtest||
R θ, (1)
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where dimension d is the size of the iVector (i.e., d = 200
used for the experiments in Section V-D). To compensate the
channel effect, as mentioned above, the work [1] considered
three different techniques namely 1) WCCN, 2) LDA, and 3)
NAP. These techniques compute projection matrices PWCCN,
PLDA, and PNAP from training speech data. In the following,
the projection matrices are denoted by P (i.e., P ≡ PWCCN ≡
PLDA ≡ PNAP ). To preserve the inner-product in (1), and
to apply these channel compensation techniques, Dehak et. al
used the following approach [1]:

score(wtarget,wtest)

=
(PTwtarget)

T (PTwtest)√
(PTwtarget)T (PTwtarget)

√
(PTwtest)T (PTwtest)

,

=
wT

targetRwtest√
wT

targetRwtarget

√
wT

testRwtest

R θ (2)

where R = PPT ∈ Rd×d.
In a traditional system (i.e., without privacy constraints),

the user device extracts ivector w1 from a speech utterance
and sends it to the server during the enrolment phase. The
server obtains R from all the users who use the system for
speaker verification. During the recognition phase, the user
device extracts another ivector w2 from a speech utterance
and sends it to the server. Now the server computes the score
using the ivectors w1 and w2, and matrix R as follows:

score(w1,w2) =
wT

1 Rw2√
wT

1 Rw1

√
wT

2 Rw2

. (3)

If score(w1,w2) > θ then the server decides that the ivectors
w1 and w2 are generated by the same speaker.

IV. MODEL, OVERVIEW AND PRIVACY-PRESERVING
APPROACH

Consider a voice verification system with N users. Lets call
the ivector w1 enrolled at the server as speaker model. During
the speaker verification stage, the user needs to send another
ivector w2 to the server. Lets call this ivector as test feature.
The server verifies the test feature against the speaker model.

Lets introduce another variable called secret key to ran-
domise the speaker model and test feature. Refer Section IV-B
for more details. The randomisation operation converts the
speaker model and test feature into randomised speaker model
and randomised test feature. Now the secret key is split into
two shared-secret-keys: one for user and one for server.

Since there are N users, the server holds N randomised
speaker models and N shared secret keys. During the ver-
ification stage, the user device randomises the test feature
vector using it’s shared secret key and sends the randomised
test feature to the server. Within this context, lets define the
following privacy threats and goals of the proposed work:
• Revocablity: In the event of data breach, it should be

possible to revoke the randomised speaker model and
enrol a new randomised speaker model.

• Template diversity: It should be infeasible for an adver-
sary to reveal whether the same user has been registered
for different services.

• Compromising the test feature: If an adversary has access
to the the test feature, then it should be infeasible for the
adversary to impersonate the user in future.

• Compromising the data from the user device: If the user
device is compromised then the stored shared secret key
shouldn’t be used to impersonate the user in future.

To satisfy the above privacy threats, the traditional speaker
verification should be redesigned. Lets introduce a crypto-
graphic primitive called randomisation technique in the fol-
lowing section which will be used to develop a PP speaker
verification.

A. Randomisation technique

Denote an integer message m ∈ M = {−2M to 2M} and
an integer secret key s ∈ S = {−2R − 2M to 2R + 2M}
where M and R are integers satisfy 2R >> 2M . The secret
key s ∈ S is generated randomly from a uniform distribution
in the range of S = {−2R−2M to 2R+2M}. Now we propose
the following algorithm to randomise the message m into a
randomised message r ∈ R = {−2R to 2R} using s.

Algorithm 1 Randomisation Technique
1: procedure RANDOMISE(m)
2: Generate secret key s
3: DO r = m+ s
4: IF r ∈ {−10R to 10R}
5: Return r, s
6: ElseIF
7: Go to Step 2
8: EndIF

Table I
RANDOMISATION: A TOY EXAMPLE.

Randomised
Messages
[-4 to 4]

(i.e., R = 2)

Possible
Messages
[-2 to 2]

(i.e., M = 1)

Possible
Secret Key Values

[-6 to 6]
(i.e., M = 1 and R = 2)

-4 -2, -1, 0, 1, 2 -2, -3, -4, -5, -6
-3 -2, -1, 0, 1, 2 -1, -2, -3, -4, -5
-2 -2, -1, 0, 1, 2 0, -1, -2, -3, -4
-1 -2, -1, 0, 1, 2 1, 0, -1, -2, -3
0 -2, -1, 0, 1, 2 2, 1, 0, -1, -2
1 -2, -1, 0, 1, 2 3, 2, 1, 0, -1
2 -2, -1, 0, 1, 2 4, 3, 2, 1, 0
3 -2, -1, 0, 1, 2 5, 4, 3, 2, 1
4 -2, -1, 0, 1, 2 6, 5, 4, 3, 2

Lets consider a toy example with a message domain M =
{−2 to 2} (i.e., M = 1), randomised message domain R =
{−4 to 4} (i.e., R = 2) and secret key domain S = {−6 to 6}
(M = 1 and R = 2). The possible messages, secret keys and
the corresponding randomised messages for the toy example
are shown in Table I.

Let’s suppose the randomised message is −4. This −4 could
have been obtained from any messages in the message domain
(i.e., -4 = -2 + -2 or = -1 + -3 or = 0 + -4 or = 1 + -
5 or = 2 + -6). Similarly if the randomised message is −3,
this randomised message could have been obtained from any
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possible messages (i.e., -3 = -2 + -1 or = -1 + -2 or = 0 + -3
or = 1 + -4 or = 2 + -5). It is obvious from Table I that any
randomised message could be generated from any message
from the message domain. Hence, if an attacker compromises
a randomised message, then it is impossible for the adversary
to recover message m from the randomised message r without
knowing the secret key s i.e., posterior probability and prior
probability of the messages are equal. Hence, this algorithm
follows information-theoretic security [13] (refer Section VI
for formal proof).

B. The Proposed Privacy-preserving Approach

This section proposes the following two algorithms: 1)
Basic Approach and 2) Strong Approach. The basic approach
protects the speaker model w1 residing at the server side.
The strong approach protects both the speaker model and test
feature vector, w1 and w2. The following sections explain
both the approaches in detail.

C. The Basic Approach

The basic approach (BA) transforms the speaker model w1

into a different vector using one-way cryptographic function.
Therefore the transformed version leak nothing about the
original values of w1 albeit it can still be used for speaker
verification. This approach protects against any unwanted
privacy leakages if the server happens to be compromised. The
randomisation technique proposed in Algorithm 1 in Table I
can be used as a one-way cryptographic function.

The user device executes Algorithm 1 to randomise w1 us-
ing a random vector r1. Then user enrols w1+r1 at the server
and keeps r1. During the verification phase, the user sends not
only w2 but also r1 to the server. The server first obtains w1

by subtracting r1 from the stored randomised feature w1+ r1
followed by executing (3). Once the verification process is
completed, the server will keep only the randomised vector
w1+ r1 and delete all other parameters (i.e., r1, w2 and w1).

Since the speaker model is randomised in the BA approach,
any attack on the server will not reveal w1 to the adversaries.
In the event of an attack, the speaker model can be revoked and
a new speaker model can be enrolled. Note that this approach
cannot protect the privacy of user biometric if the server has
already been infected by a malware which can monitor the
speaker verification process. Hence, the BA approach trusts
the server and assumes that the server follows the procedure
and free from malware.

D. The Strong Approach

The strong approach (SA) does not require a trusted server
for speaker verification. The aim of the SA approach is that
even if the server is infected by a malware, it should be
infeasible for the malware to obtain w1 and w2. To achieve
this objective, during the enrolment phase, the user randomises
the feature vector w1 using random vectors r1 and rx using
the Algorithm 1 and enrols w1+ r1 and wx

1 = w1+ rx at the
server and keeps r1 and wy

1 = −r1 where

w1 = wx
1 +wy

1 . (4)

Then the user deletes w1 from the user device (the intuition
behind this split is explained in Section VI-B). During the
speaker verification phase, the user device randomises the test
feature vector w2 using a random vector r2 and sends w2+r2
to the server and keeps r2.

Then the server uses w1+ r1, and w2+ r2 to computes (3)
as follows:

score(w1 + r1,w2 + r2)

=
(w1 + r1)

TR(w2 + r2)√
(w1 + r1)TR(w1 + r1)

√
(w2 + r2)TR(w2 + r2)

,

=
wT

1 Rw2 + n1√
wT

1 Rw1 + n2
√
wT

2 Rw2 + n3
, (5)

where

n1 = wT
1 Rr2 + rT1 Rw2 + rT1 Rr2,

= wx
1
TRr2 +wy

1
T
Rr2 + rT1 Rw2 + rT1 Rr2, (6)

n2 = wT
1 (2R)r1 + rT1 Rr1,

= wx
1
T (2R)r1 +wy

1
T
(2R)r1 + rT1 Rr1, (7)

n3 = wT
2 (2R)r2 + rT2 Rr2. (8)

In the numerator of (5), the true value wT
1 Rw2 has been

randomised by n1. Similarly, in the denominator of (5), the
true values wT

1 Rw1 and wT
2 Rw2 have been randomised by

n2, and n3, respectively. In order to correctly verify the user,
the server needs to calculate n1, n2, and n3. However, the
server does not have all the variables to correctly computes
n1, n2, and n3. The table in Figure 1 shows all the variables
that are known only to the server and known only to the user.

Therefore, the user and server need to compute n1, n2, and
n3 jointly without leaking any sensible information to each
other (i.e., secure two-party computation [15]). Lets define six
vectors u1, s1, u2, s2, u3, and s3 as follows:

u1 =
[
rT2 vec(r2w

y
1
T
+w2r

T
1 + rrT1 )

]T
∈ R(d+d2)×1,

s1 =
[
wx

1
TR vec(R)T

]T
∈ R(d+d2)×1,

u2 =
[
rT1 vec(r1w

y
1)
T vec(r1r

T
1 )
T
]T ∈ R(d+2d2)×1,

s2 =
[
2wx

1
TR vec(2R)T vec(R)T

]T
∈ R(d+2d2)×1,

u3 =
[
vec(r2w

T
2 )
T vec(r2r

T
2 )
T
]T ∈ R2d2×1,

s3 =
[
vec(2R)T vec(R)T

]T ∈ R2d2×1,

where vec(.) denotes the vectorisation operation. From the
table in Figure 1, the vectors u1, u2, and u3 can be obtained
by the user without interacting with the server. Similarly, the
vectors s1, s2, and s3 can be obtained by the server without
interacting with the user. Hence, the equations (6) - (8) can
be modified into

n1 = uT1 s1, n2 = uT2 s2, & n3 = uT3 s3. (9)

To calculate n1, n2, and n3, the user and server need to
interact with each other. The following subsection explains
this procedure.
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Figure 1. Message flow diagram of the proposed SA algorithm. The left figure shows the enrolment steps, the right figure shows the verification steps, and
the table shows the parameters that are known only to the user and the parameters known only to the server.

E. The privacy-preserving scalar product algorithm

To compute the required scalar products in (9), the user and
server follow a PP protocol where no party can learn the other
party’s input. At the end of the protocol server should be able
to obtain n1, n2, and n3. This can be achieved by the PP
scalar product algorithm in Table II [18].

The user and server jointly execute the protocol in Table
II three times to compute (9). Initially the user generates
a number of random values to randomises its input vector
a (= u1 for first execution) and obtains randomised vector
[C1, C2, . . . , Cn]. As these randomisation operations use mod-
ulo reduction, the server cannot reverse engineer and reveal
the user’s input data from [C1, C2, . . . , Cn] (refer [18] for the
formal security proof and correctness).

Upon receiving [C1, C2, . . . , Cn], the server now performs
multiplication operations to get [D1, D2, . . . , Dn]. These val-
ues are then added through modulo addition followed by
randomisation operation using γ. The final value is sent to the
user. The user obtains aTb+γ using the secret key s−1 mod p.
Finally the server receives aTb + γ from user and subtracts
γ to get aTb (i.e., = uT1 s1). Message flow diagram of the
proposed SA algorithm is shown in Figure 1.

V. PERFORMANCE ANALYSIS

This section describes the dataset used for the experiments,
results and the complexity, security, and privacy analysis of
the proposed algorithm.

A. The dataset

TIMIT speech corpus has been used to evaluate the accuracy
and reliability of the proposed algorithm [6]. The TIMIT
speech corpus contains broadband recordings (each recording
lasts for around 3 seconds) of 630 speakers of eight major
dialects of American English. Each speaker has 10 speech
samples. Out of 10 samples, 8 were used to build the speaker
model.

For experiment, the TIMIT data corpus has been split into
two: 1) the first two dialect regions with 151 speakers are used

Table II
PP SCALAR PRODUCT ALGORITHM [18].

Input by User: a = [a1, . . . , an]
T ∈ Fnq

and Server: b = [b1, . . . , bn]
T ∈ Fnq

Output to Server: aTb
User performs the following operations:

Given security parameters k1, k2, k3, k4,
choose two large primes α, p
such that |p| = k1, |α| = k2, set an+1 = an+2 = 0

Choose a large random number s ∈ Zp, and n+ 2 random
numbers ci, i = 1, 2, ..., n+ 2, with |ci| = k3

FOR EACH ai, i = 1, 2, ..., n+ 2
Compute

Ci = s(ai.α+ ci) mod p, ai 6= 0
Ci = sci mod p, ai = 0

END FOR
keeps s−1mod p secret, and sends (α, p, C1 . . . Cn+2) to Server

Now Server executes the following operations
set bn+1 = bn+2 = 0
FOR EACH bi, i = 1, 2, ..., n+ 2

Compute
Di = bi.α.Ci mod p, bi 6= 0
Di = ri.Ci mod p, bi = 0,
where ri is a random number with |ri| = k4

END FOR
compute D =

∑n+2
i=1 Di + γ mod p

and send D back to User where |γ| > |
∑n+2
i=1 ai.bi|

Now User computes
E = s−1.D mod p and get aTb+ γ

=
∑n
i=1 ai.bi + γ = E−(E mod α2)

α2 and sends aTb+ γ to Server
Now Server obtains

aTb by subtracting γ from aTb+ γ
end procedure

for training and testing and 2) the last four dialect region with
277 speakers were used to build background model. Table III
shows the statistics of the TIMIT dataset.

B. Experiments on the TIMIT Database without Privacy

To validate the proposed method, we first obtain the veri-
fication accuracy of the iVector algorithm on TIMIT dataset
using the pre-divided speech samples shown in Table III.
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Table III
TIMIT DATABASE.

Dialect
Region (DR) #Male #Female Total

DR1 31 18 49
DR2 71 31 102
DR3 79 23 102
DR4 69 31 100
DR5 62 36 98
DR6 30 16 46
DR7 74 26 100
DR8 22 11 33
Total 438 192 630

C. Definitions

Next subsections present various tests to validate the pro-
posed model. To facilitate the description of tests, lets in-
troduce a few definitions used in speaker verification to
measure the performance: False Acceptance Rate (FAR), False
Rejection Rate (FRR), Equal Error Rate (EER), and Detection
Error Tradeoff (DET) curve1.

FAR and FRR are the two types of errors defined as follows:
• FAR= Number of False Acceptance

Total Number of Imposter Attempts × 100%,
• FRR = Number of False Rejection

Total Number of Geinune Attempts × 100%,
where False Acceptance means the system grants access to an
impostor, and False Rejection means the system denies access
to an enrolled speaker. EER represents the operating point
where the FAR is equal to the FRR. DET curve has been used
in speaker verification to view FAR, FRR, and EER on the
same curve. The DET curve comprises FRR in the y-axis and
FAR on the x-axis. The EER represents the point on the DET
curve where both FRR and FAR are equal.

D. Baseline Test

As described above, there are 151 users enrolled at the
server. There are two speech samples available for each user
for verification. To test the performance of the traditional (i.e.,
without privacy constraints) speaker verification, the following
two tests are conducted:

1) Genuine Attempts:- Client-Client: In this test, for each
speaker, the score is calculated using the speaker’s speaker
model against the speaker’s two test utterances. Hence, the
scores for 151× 2 = 302 tests are obtained using (3).

2) Imposter Attempts:- Imposter-Client: In this test, each
speaker’s test utterances are tested against other 150 users’
speaker models. This leads to 151 × (151 − 1) × 2 = 45300
tests and the score for each test has been obtained using (3).
Figure 2 shows the distribution between genuine attempts and
imposter attempts tests. When the threshold θ = 1.34 the EER
is 6.5%. We will use this result as a benchmark to compare
the performance of the proposed algorithm.

E. Testing the Proposed Algorithm

Same experimental protocols described in Section V-D has
been repeated to test the proposed algorithm. Since the PP

1DET curves are plotted using NIST DET-ware-v2.1 tool: Available On
line: https://www.nist.gov/file/65996, Accessed on 5th of June, 2018.

protocol in Table II is suitable for integers, the decimal values
in speaker models and test feature vectors must be scaled to
integers via scaling and quantisation operations followed by
randomisation.

Table IV shows few examples for scaling, quantisation and
randomisation using the values of ivectors (i.e., w1 or w2) and
projection matrix (i.e., R). When the scaling factor increases,
the effect of quantisation is decreasing e.g., the sample value in
the first row in Table IV (0.010924) is almost half of the value
in the second row (0.017854). However, when the scaling
factor is equal to 100 (2nd column), both the values became
equal. When the scaling factor is 1000 (fourth column), the
ratio between both the values is getting closer to the correct
ratio. As shown in Figures 5 and 6, the elements of iVectors
follow normal distribution with a mean 0 (approximately) and
standard deviation 0.01.

The last three columns of Table IV shows how the scaled
values are randomised by different sizes of random numbers.
The fifth and last columns in Table IV show how the scaled
elements in fourth column are randomised using random
numbers between −10 to 10, and −106 to 106, respectively.
The experiments demonstrated that the output elements of the
randomisation operation always follow uniform distribution
e.g., when the iVectors are scaled by 1000 followed by
randomisation operation in the range of −106 to 106 according
to Algorithm 1, then the output distribution is uniform with
standard deviation 5.7825×105 (where the theoretical standard
deviation for the uniform distribution in the range −106 to 106

is 5.7735× 105) - refer Figure 7.
To evaluate the impact of scaling and rounding operations,

we repeated the two tests conducted in Section V-D but using
the proposed algorithm for scaling factors s = 100, s = 200,
s = 400, s = 600, s = 800, and s = 1000 and randomisation
with random numbers in the range of −106 to 106. Figure 3
shows the DET curves for the above scaling factors. When
the scaling factor increases from 100 to 1000, the accuracy of
the proposed scheme approaches the benchmark accuracy. For
a scaling factor s = 1000, the proposed algorithm illustrates
identical recognition as the benchmark. This validates that the
proposed model does not compromise the accuracy.

In order to test the effect of randomisation (or to answer why
the scaled and quantised input elements are randomised using
large random numbers (106) instead of 10), we repeated the
baseline test (experiment conducted in Section V-D) but with a
randomised test feature vector and projection matrix. We used
different size of random values ranging from 1 to 105 to ran-
domise the elements of test features and projection matrix. We
also tested the baseline model with pure random vectors (i.e.,
generated independently of speech) as test features. As shown
in Figure 4, when the size of the random values decreases,
the accuracy increases. When the size of the random values
are in the range of 105, there is no significant difference in
accuracy between random testing (Pure Random in the Figure
4) and randomised testing. It means if the input elements are
not masked by large random numbers then it is possible for the
adversary to infer the identity of the input samples. However,
when larger random numbers (i.e., 105 in this experiment) are
used to randomise the test features, the accuracy of the system
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for various scaling factors.

  1     2     5     10    20    40    60    80  
False Acceptance Rate (in %)

  1   

  2   

  5   

  10  

  20  

  40  

  60  

  80  

F
a

ls
e

 R
e

je
c
ti
o

n
 R

a
te

 (
in

 %
)

DET Curves (Effect of Randomisation)

r=105

r=104

r=103

r=102

r=101

r=1

Pure Random

Baseline

EER line

Figure 4. The accuracy of the proposed scheme
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Table IV
SAMPLE DATA SHOWING THE EFFECTS OF SCALING, QUANTISATION AND RANDOMISATION.

Effect of Scaling (Supporting Data for Figure 3) Effect of Randomisation (Supporting Data for Figure 4)

Sample
iVector
Values

Scaling (x100)
and Integer
Quantisation

Scaling (x600)
and Integer

Quantisation

Scaling (x1000)
and Integer

Quantisation

Randomising with
random number
in the range of

[-10 to 10]

Randomising with
random number
in the range of
[-100 to 100]

Randomising with
random number
in the range of
[−106 to 106]

0.010924 1 6 11 7 23 447961
0.017854 1 10 17 8 -6 359424
-0.027501 -2 -16 -27 -33 25 310168

Sample elements
of Projection

Matrix R

Scaling (x100)
and Integer
Quantisation

Scaling (x600)
and Integer

Quantisation

Scaling (x1000)
and Integer

Quantisation

Randomising with
random number
in the range of

[-10 to 10]

Randomising with
random number
in the range of
[-100 to 100]

Randomising with
random number
in the range of
[−106 to 106]

2.080734 208 1248 2080 2088 2079 -1191
1.714698 171 1028 1714 1719 1704 921203
1.098638 109 659 1098 1095 1128 -318130
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Figure 5. Distribution of raw iVector components
(mean is 1.0245 × 10−5 and standard deviation
0.0106).
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Figure 6. Distribution of raw iVector components
after scaling operation.
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Figure 7. Distribution of raw iVector components
after randomisation operation (standard distribution
is 5.7825× 105)

is closer to the accuracy of pure random inputs. It means
when the input elements are randomised by large random
numbers, there is no different in statistical properties between
pure random values and randomised input values.

F. Complexity Analysis

The proposed PP algorithms require additional mathemat-
ical operations to protect the parameters from the untrusted

server. The BA algorithm does not require any additional math-
ematical operations except addition and subtraction, hence we
assume the complexity of BA is same as the traditional (i.e.,
without privacy constraint) algorithm. Lets denote the time
complexity for one multiplication as tmul and for square-
root as √. Since the ivector feature extraction is common
for both the traditional and the proposed SA algorithm, lets
compare the complexity of both the algorithm after the feature
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extraction.
In the traditional algorithm, once the ivector has been

extracted, the user device does not require to perform any
operations. However, the server needs to compute (3) which
requires 3(d2 + d)tmul + 2

√
. operations if the ivectors are

d−dimensional. In the proposed SA algorithm, the user device
and server need to perform some additional computations to
obtain (9) via scalar product algorithm in Table II. To execute
the algorithm in Table II, the server incurs (2n + 4)tmul

complexity and the user device incurs (2n+5)tmul complexity
if the dimension of the input vectors is n.

In order to compute the scalar products in (3), the user and
server need to invoke the protocol illustrated in Table II twice
(to obtain n1 and n3). It should be noted that n2 in (3) can be
calculated offline and pre-stored at the server side as it does
not require speaker recognition parameters. Hence the total
computational cost for the user and server would be 2(2n +
5)tmul and 2(2n+4)tmul +3(d2 + d)tmul +2

√
., respectively.

Hence the computational overheads for the user and server are
2(2n+5)tmul and 2(2n+4)tmul, respectively (i.e., subtract the
traditional algorithm’s complexity from proposed algorithm’s
complexity).

In order to evaluate the complexity, we implemented the
proposed scheme on a computer - Intel(R) Core(TM) i5-
4210U CPU @1.70GHz with 8GM RAM - using Mat-
lab 2016a. We modified the iVector library from GitHub
(github.com/pedrocolon93/ivectormatlabmsrit) to implement
the proposed scheme. Using this implementation, we tested
the complexity of the proposed scheme for different values
of n. We performed 50 iterations of the proposed scheme
by varying the input size n from 103 to 106. The average
time taken is illustrated in Figure 8. The computational time
increases linearly up to n = 105. From n = 105, the time
increases exponentially due to processing large amount of data
in a sequential order. This problem can be solved by parallel
processing by executing the scalar product computation in
multiple threads. For example, if n = 6, instead of calculating
[a1 a2 a3 a4 a5 a6].[b1 b2 b3 b4 b5 b6]

T sequentially, the
problem can be split into two: [a1 a2 a3].[b1 b2 b3]

T and
[a4 a5 a6].[b4 b5 b6]

T . The results can be added in the end.
For the experiment in Section V, the dimension of iVector

has been set to d = 200 [1]. Therefore the sizes of the input
vectors in (9) for Table II, are in the range of n = 40000 to
n = 80000. This is within the linear time complexity range
i.e., the incurred computational overhead is less than 0.05
seconds for both the user and server.

VI. SECURITY AND PRIVACY ANALYSIS

Since the proposed algorithm relies on randomisation, the
following subsections provide a formal security proof for
the proposed randomisation algorithm in Section VI-A and
a privacy analysis for the proposed SA algorithm in Section
VI-B.

A. Security model and proof for the proposed randomisation
algorithm in Section VI-A

This section proves that the proposed randomisation al-
gorithm in Section IV-A satisfies the information-theoretic
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Figure 8. Computational overheads of the proposed scheme for user and server.
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security. Denote a mapping f :M×S 7−→ R. We call such
a mapping f over a message spaceM to be perfectly random
if and only if for an uniform probability distribution s over S ,
every message m ∈M and every randomised message r ∈ R,
probability P [M = m|R = r] is constant greater than zero,
i.e., looking at the randomised message no one can guess the
message. Theorem 1 shows that Algorithm 1 in Section IV-A
attains perfect randomisation.

Theorem 1: Let M = [−a, a] ∩ Z and S = [v1, v2] ∩ Z be
two sets such that a < v1 < v1 + a < v2. Also let
R = {m + s;m ∈ M, s ∈ S, v1 + a ≤ m + r ≤ v2 − a}.
Then for any r ∈ R, P [M = m|R = r] = 1

|S| .
Proof: Let r ∈ R and m ∈M. Then, it is easy to check

that v1 ≤ r −m ≤ v2. So,

P [M = m|R = r] = P [r − s = m|R = r]

= P [r − s = m] = P [s = r −m] =
1

|S|

The perfect randomness leads to adaptive indistinguishabil-
ity. But before giving the proof, we first consider the definition
of adaptive indistinguishability game.

Definition 1: [Gm AdA,π(1
s)]
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1. The adversary A is given oracle access to Encs(.) and
outputs a pair of messages m0,m1 ∈ M of the same
length.

2. Random bit b ← {0, 1} is chosen, and s ← S is also
chosen randomly. Then a ciphertext r = s + mb is
computed and given to A.

3. The adversary A continues to have oracle access to
Encs(.) and outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise. In case Gm AdA,π(1

s) = 1, we say
that A succeeded.

Definition 2: An encryption scheme, denoted by π =
(KeyGen,Enc,Dec), is said to be adaptively secure under
chosen plain text attack if for all probabilistic polynomial time
adversaries A, there exists a negligible function negl such that
P [Gm AdA,π(1

s) = 1] ≤ 1
2 +negl(s), where the probability

is taken over the random coins used by A, as well as the
random coins used in the game.

Let us consider the encryption scheme π′ =
(Gen,Encs,Decs) such that Gen() samples uniformly
at random a key s from the set S, i.e., P [S = s] = 1

|S| .
For any m ∈ M, Encs(m) = m + s and for any r ∈ R,
Decs(r) = r − s. Following theorem shows that this scheme
is adaptively secure.

Theorem 2: π′ is adaptively secure under chosen plain text
attack.

Proof: Let |S| ≈ 2λ. Let us consider the game
Gm AdA,π′(1λ). Note that A being a polynomial adversary,
may call the encryption oracle polynomial (in λ) number of
times before receiving challenge cipher. Let this polynomial be
p(λ). Let Repeat be the event that the key used in challenge
phase is used in any of the previous calls.

Note that P [(Gm AdA,π′(1λ) = 1) ∧ Repeat] ≤
P [Repeat] = p(λ)

2λ
.

Also when Repeat does not occur, adversary has absolutely
a random view and thus,
P [(Gm AdA,π′(1λ) = 1) ∧ Repeat] = P [Repeat] ×
P [(Gm AdA,π′(1λ) = 1)|Repeat] ≤ P [(Gm AdA,π′(1λ) =
1)|Repeat] = 1

2 .
So,

P [Gm AdA,π′(1λ) = 1] = P [(Gm AdA,π′(1λ) = 1) ∧ Repeat]

+ P [(Gm AdA,π′(1λ) = 1) ∧ Repeat] ≤ p(λ)

2λ
+

1

2

We note that p(λ)
2λ

is negligible in λ which completes the proof.

B. Privacy Analysis for the proposed SA algorithm in Section
VI-B

The ultimate aim of the proposed algorithms is to protect
user voice biometrics stored at and transmitted to the server.
Both the proposed BA and SA algorithms randomise the voice
feature vectors using random vectors and invoke two-party
computation. During the two-party computations, if the user
and server exploit the proposed randomisation algorithm to
mask the data, as shown in the previous section, then the
randomised data is information theoretically secure. Hence

lets prove that the proposed SA algorithm does not leak any
unintended data during the two-party computation.

1) Privacy proof for SA algorithm: During the enrolment
process, the user device randomises the ivector w1 using
the proposed randomisation algorithm and sends only the
randomised ivector w1 + r1 and wx

1 = w1 + rx to the server
and stores the random vectors r1 and −rx in the user device.
Then the user device deletes w1 and rx. After this enrolment
process, the server holds w1 + r1 and wx

1 = w1 + rx while
the user holds r1 and wy

1 = −rx. Hence, even if the server
has been compromised by an adversary after the enrolment,
it is information-theoretically infeasible for the adversary to
retrieve w1 from w1 + r1 and wx

1 = w1 + rx without r1 and
rx. Similarly, if the user device which holds r1 and wy

1 = −rx
is being compromised by an adversary, it is information-
theoretically infeasible for the adversary to retrieve w1. To
launch a successful attack, the adversary needs to compromise
both the server and user device, which is an extreme condition
and out of the scope of this paper.

During the verification stage, the ivector w2 is again ran-
domised into w2 + r2 where the user device keeps r2 and
the server gets w2 + r2. Similar to the above discussion, w2

cannot be obtained from w2 + r2. However, in order to get
the true score, the user device and server need to perform the
two-party computation using the PP scalar product algorithm
in Table II. As shown in [18], the security of the algorithm in
Table II relies on randomisation (User’s inputs a1, a2, . . . are
randomised by large random numbers c1, c2, . . .) and achieves
information-theoretic security.

C. Privacy Leakage Analysis

The previous section provided a theoretical proof showing
that the proposed algorithm is information theoretically secure.
To visualise this and analyse whether the randomised features
still preserve the statistical properties of speech feature, a
numerous experiments are conducted in this section. We
can broadly split the parameters required for a successful
verification into four: 1) voice 2) randomised iVector (w1+r1)
3) parameters stored on the user device and 4) server-side
parameters. In order to evaluate the strength of the proposed
algorithm, the following four attacks are considered:

1. Compromised user device attack
2. Compromised server attack
3. Compromised user voice attack
3. Pure random attack
1) Compromised user device attack: In this attack, the

adversary has access to the user device and the parameters
stored during the enrolment. But do not have access to the user
voice to generate legitimate test ivector. Hence, the adversary
tries to combine the parameters from the compromised user
device with the test features of other users. Then the adversary
tries to verify against the compromised user’s speaker model
residing at the server. To evaluate this, 2 × 150 × 151 tests
[300 test utterances from other users are combined with the
parameters of the compromised user device and this is repeated
for all the users] are conducted and the corresponding decision
scores are obtained.
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2) Compromised server attack: In this attack, the adversary
has access to the randomised ivectors w1 + r1 of all the
users stored at the server. Let’s also assume that the adversary
holds the feature vectors of all users but neither know the
corresponding ivectors stored at the server or keys stored at the
user device. Now the attacker uses these randomised ivectors
to simulate a speaker verification system and tries to find out
the corresponding users for each stolen randomised ivector.
Hence, the adversary tries to measure the decision score by
applying those features against each and every randomised
ivector. Again 2 × 151 × 151 tests are conducted and the
corresponding decision scores are obtained.

3) Compromised user voice attack: In this attack, the
attacker has access to the user’s voice recording but does not
have access to the parameters stored at the user device. Now
the attacker generates random numbers and randomises the
voice feature and tries to impersonate. Hence, this experiment
generates 300 random vectors same size as the feature to ob-
tain 300 randomised test features. To analyse the performance,
300× 151 tests are conducted and the corresponding decision
scores are obtained.

4) Pure random attack: In this final test, the traditional
solution has been considered but instead of using the legitimate
test features, purely random vectors in the same domain and
same size as the legitimate test ivector used. Hence, we
generate 300 random vectors for each user and conducted
300× 151 tests.

Figure 9 displays the DET curves for the above attacks. In
the same figure, we displayed the baseline model. Interestingly,
from Figure 9, the equal error rate for all four attacks are
around 50% and there is no significant difference between the
first three attacks against the pure random attacks (the fourth
attacks). This clearly shows that there are no advantages for an
adversary who compromises the parameters of the proposed
systems than just launching random attacks. This concludes
that the proposed algorithm is information theoretically secure
and all four parameters must be combined to reveal the
statistical properties.

VII. CONCLUSION

In this paper, an efficient privacy preserving speaker ver-
ification protocol is proposed. To achieve better efficiency
and privacy, the proposed solution algorithmically redesigned
the iVector and linear discriminant analysis based speaker
verification techniques to incorporate randomness without af-
fecting the final outcome. The proposed scheme is based on
randomisation technique and it only relies on multiplication
and addition. In this scheme, two parties involved, the user
and the server, need to perform verification interactively. In
addition, it is proved using information-theoretic security that
the algorithm is secure. It is also shown empirically that

the proposed scheme provides good overall accuracy without
increasing the computational overhead.
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