33,713 research outputs found

    Network Structure, Efficiency, and Performance in WikiProjects

    Full text link
    The internet has enabled collaborations at a scale never before possible, but the best practices for organizing such large collaborations are still not clear. Wikipedia is a visible and successful example of such a collaboration which might offer insight into what makes large-scale, decentralized collaborations successful. We analyze the relationship between the structural properties of WikiProject coeditor networks and the performance and efficiency of those projects. We confirm the existence of an overall performance-efficiency trade-off, while observing that some projects are higher than others in both performance and efficiency, suggesting the existence factors correlating positively with both. Namely, we find an association between low-degree coeditor networks and both high performance and high efficiency. We also confirm results seen in previous numerical and small-scale lab studies: higher performance with less skewed node distributions, and higher performance with shorter path lengths. We use agent-based models to explore possible mechanisms for degree-dependent performance and efficiency. We present a novel local-majority learning strategy designed to satisfy properties of real-world collaborations. The local-majority strategy as well as a localized conformity-based strategy both show degree-dependent performance and efficiency, but in opposite directions, suggesting that these factors depend on both network structure and learning strategy. Our results suggest possible benefits to decentralized collaborations made of smaller, more tightly-knit teams, and that these benefits may be modulated by the particular learning strategies in use.Comment: 11 pages, 5 figures, to appear in ICWSM 201

    Core-crust transition pressure for relativistic slowly rotating neutron stars

    Get PDF
    We study the influence of core-\textit{crust} transition pressure changes on the general dynamical properties of neutron star configurations. First we study the matching conditions in core-\textit{crust} transition pressure region, where phase transitions in the equation of state causes energy density jumps. Then using a surface \textit{crust} approximation, we can construct configurations where the matter is described by the equation of state of the core of the star and the core-\textit{crust} transition pressure. We will consider neutron stars in the slow rotation limit, considering perturbation theory up to second order in the angular velocity so that the deformation of the star is also taken into account. The junction determines the parameters of the star such as total mass, angular and quadrupolar momentum.Comment: 4 pages, 1 figur
    • …
    corecore