501 research outputs found
Multiple-origin-multiple-destination path finding with minimal arc usage: Complexity and models
The multiple-origin-multiple-destination (MOMD) problem is a simplified version of the logistics planning problem in which packages are required to be transported from their origins to their destinations by multiple trucks with a minimum total cost. This paper proves the NP-hardness of the problem, and gives two SAT-based models for solving the problem optimally. It also gives experimental results that compare these two SAT models and ASP and CP models
Vehicle development, pharmacokinetics and toxicity of the anti-invasive agent 4-fluoro-3’,4’,5’-trimethoxychalcone in rodents
Effective inhibitors of invasion and metastasis represent a serious unmet clinical need. We have recently identified 4-fluoro-3',4',5'-trimethoxychalcone or C-16 as a potent anti-invasive molecule. In this paper, we report on the development of an optimized vehicle for oral administration of C16. We also explore its pharmacokinetic and toxicity profile in rodents as a prelude to a broad-scope evaluation as a pharmacological tool in animal models of disease. C16 showed suboptimal pharmacokinetics with limited oral bioavailability and whole blood stability. Rapid metabolism with elimination via glutathione conjugation was observed. An oral dosing routine using medicated gels was developed to overcome bioavailability issues and yielded sustained whole blood levels above the half maximal effective concentration (EC50) in a 7-day study. The compound proved well-tolerated in acute and chronic experiments at 300 mg/kg PO dosing. The medicated gel formulation is highly suitable for evaluation of C16 in animal models of disease
Cleavage of the Oxanorbornene Oxygen Bridge with Lewis Acids: Computation and Experiment
Since the discovery of the biological activity of aminophosphonates, research started on the synthesis of more constraint azaheterocyclic phosphonates. We developed a route via an intramolecular Diels-Alder reaction towards α-aminophosphonates 1. [1] The obtained oxanorbornene skeleton is a valuable synthetic intermediate that has been used in various natural product syntheses. [2] An important synthetic transformation involves the cleavage of the oxygen bridge, used to construct substituted arenes and cyclohexenes. We wanted to investigate the ring opening of adducts 1 using different Lewis acids experimentally and get more insight in the reaction pathways towards the different products via computational experiments. In this presentation the results obtained with TiCl4 and FeCl3 catalyst are shown.
The computational study started with the catalysts and their multiplicity. Next, the complexation energy with different binding sites was calculated. Therefore, a level of theory study was done using an ONIOM QM/QM approach. This shows the importance of the inclusion of electron correlation effects. B3LYP geometries and energies can be used as a good approximation. Bidentate coordination towards the most electronegative phosphonate oxygen and the oxygen bridge is favoured for both catalysts. Then, different reaction pathways were investigated via a static, gas-phase approach. The energy barrier towards the transition state using the TiCl4 catalyst, shown in Figure 1, is much lower than for the FeCl3 catalyst and very different products are formed. The computational results were compared with the experiments
Discovery of (S)-3′-hydroxyblebbistatin and (S)-3′-aminoblebbistatin : polar myosin II inhibitors with superior research tool properties
In search of myosin II inhibitors with superior research tool properties, a chemical optimization campaign of the blebbistatin scaffold was conducted in this paper. (S)-Blebbistatin is the best known small-molecule inhibitor of myosin II ATPase activity. Unfortunately, as a research tool this compound has several deficiencies: it is photolabile and (photo) toxic, has low water solubility, and its (fluorescent) precipitates interfere in (fluorescence) readouts. In view of obtaining tool compounds with improved properties, both enantiomers of a series of D-ring modified polar analogs were prepared. We identified (S)-3'-hydroxyblebbistatin (S)-2 and (S)-3'-aminoblebbistatin (S)-3 as two myosin II inhibitors with a 30-fold higher water solubility than (S)-blebbistatin. These molecules furthermore do not cause interference in (fluorescence) readouts. (S)-2 and (S)-3 thus are superior alternatives to (S)-blebbistatin as research tools to study myosin II
- …