61 research outputs found

    The Effect of Asynchronous Execution and Message Latency on Max-Sum

    Get PDF
    Max-sum is a version of belief propagation that was adapted for solving distributed constraint optimization problems (DCOPs). It has been studied theoretically and empirically, extended to versions that improve solution quality and converge rapidly, and is applicable to multiple distributed applications. The algorithm was presented both as a synchronous and an asynchronous algorithm, however, neither the differences in the performance of these two execution versions nor the implications of message latency on the two versions have been investigated to the best of our knowledge. We contribute to the body of knowledge on Max-sum by: (1) Establishing the theoretical differences between the two execution versions of the algorithm, focusing on the construction of beliefs; (2) Empirically evaluating the differences between the solutions generated by the two versions of the algorithm, with and without message latency; and (3) Establishing both theoretically and empirically the positive effect of damping on reducing the differences between the two versions. Our results indicate that in contrast to recent published results indicating the drastic effect that message latency has on distributed local search, damped Max-sum is robust to message latency

    Distributed Gibbs: A linear-space sampling-based DCOP algorithm

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    Message delay and asynchronous DisCSP search

    No full text
    Distributed constraint satisfaction problems (DisCSPs) are composed of agents, each holding its own variables, that are connected by constraints to variables of other agents. Due to the distributed nature of the problem, message delay can have unexpected effects on the behavior of distributed search algorithms on DisCSPs. This has been shown in experimental studies of asynchronous backtracking algorithms [1, 9]. To evaluate the impact of message delay on the run of DisCSP search algorithms, a model for distributed performance measures is presented. The model counts the number of non concurrent constraints checks, to arrive at a solution, as a non concurrent measure of distributed computation. A simpler version measures distributed computation cost by the number of non-concurrent steps of computation. An algorithm for computing these distributed measures of computational effort is described. The realization of the model for measuring performance of distributed search algorithms is a simulator which includes the cost of message delays. The performance of two asynchronous search algorithms is measured on randomly generated instances of DisCSPs with delayed messages. The Asynchronous Weak Commitment (AW C) algorithm and Asynchronous Backtracking (ABT). The intrinsic reordering process of AW C dictates a need for a more complex count of non-concurrent steps of computation. The improved counting algorithm is also needed for Dynamic ordered ABT. The delay of messages is found to have a strong negative effect on AW C and a smaller effect on dynamically ordered ABT

    R.: Asynchronous Forward-checking on DisCSPs

    No full text
    Abstract. A new search algorithm for solving distributed constraint satisfaction problems (DisCSPs) is presented. Agents assign variables sequentially, but perform forward checking asynchronously. The asynchronous forward-checking algorithm (AFC) is a distributed search algorithm that keeps one consistent partial assignment at all times. Forward checking is performed by sending copies of the partial assignment to all unassigned agents concurrently. The algorithm is described in detail and its correctness proven. The sequential assignment method of AFC leads naturally to dynamic ordering of agents during search. Several ordering heuristics are presented. The three best heuristics are evaluated and shown to improve the performance of AFC with static order by a large factor. An experimental comparison of AFC to asynchronous backtracking (ABT) on randomly generated DisCSPs is also presented. AFC with ordering heuristics outperforms ABT by a large factor on the harder instances of random DisCSPs. These results hold for two measures of performance: number of non-concurrent constraints checks and number of messages sent. Keywords: Distributed CSPs, Asynchronous Search, Forward-Checking 1
    • …
    corecore