6,516 research outputs found
Applying control theories and ABM to improve resilience-based design of systems
Applying optimal control theories and agent base modeling to improve resilience assessment of systems is a new field which has not been explored yet. A resilience decision support system should include some critical elements: (i) Assess risk, (ii) identify choices (Identify choices for reducing vulnerability that focus on joint solutions across social, economic, and ecological systems; provide decision support, including Web-based guidance and scenarios to assess options) and (iii) take actions (Help communities develop and implement solutions). The field of structural control provides loops which are able to approach the problem in a more rational way and provide practical solutions to the resilience design strategies. The paper describes the concept and provides some promising applications of the proposed interdisciplinary approach
Living Like A Monk: Motivations and Experiences of International Participants in Templestay
Templestay has transformed the perception and traditional role of Buddhist monasteries into a hybrid form of leisure and recreational dwelling that transcends religious boundaries. We identify four domains of motivational variables including learning, self-growth, being with nature, and relaxation. Based on data from 299 international participants in Templestay, empirical tests of the hypotheses revealed that motivational domains such as self-growth, nature, and learning exhibited significant differences based on the various socio-demographic backgrounds of international participants. Strategies are suggested for crafting Templestay as a cultural and monastic experience as well as segmenting and targeting international participants based on their needs
Electronic Structure of Electron-doped Sm1.86Ce0.14CuO4: Strong `Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order
Angle resolved photoemission (ARPES) data from the electron doped cuprate
superconductor SmCeCuO shows a much stronger pseudo-gap
or "hot-spot" effect than that observed in other optimally doped -type
cuprates. Importantly, these effects are strong enough to drive the
zone-diagonal states below the chemical potential, implying that d-wave
superconductivity in this compound would be of a novel "nodeless" gap variety.
The gross features of the Fermi surface topology and low energy electronic
structure are found to be well described by reconstruction of bands by a
order. Comparison of the ARPES and optical data from
the sample shows that the pseudo-gap energy observed in optical data is
consistent with the inter-band transition energy of the model, allowing us to
have a unified picture of pseudo-gap effects. However, the high energy
electronic structure is found to be inconsistent with such a scenario. We show
that a number of these model inconsistencies can be resolved by considering a
short range ordering or inhomogeneous state.Comment: 5 pages, 4 figure
Stationary untrapped boundary conditions in general relativity
A class of boundary conditions for canonical general relativity are proposed
and studied at the quasi-local level. It is shown that for untrapped or
marginal surfaces, fixing the area element on the 2-surface (rather than the
induced 2-metric) and the angular momentum surface density is enough to have a
functionally differentiable Hamiltonian, thus providing definition of conserved
quantities for the quasi-local regions. If on the boundary the evolution vector
normal to the 2-surface is chosen to be proportional to the dual expansion
vector, we obtain a generalization of the Hawking energy associated with a
generalized Kodama vector. This vector plays the role for the stationary
untrapped boundary conditions which the stationary Killing vector plays for
stationary black holes. When the dual expansion vector is null, the boundary
conditions reduce to the ones given by the non-expanding horizons and the null
trapping horizons.Comment: 11 pages, improved discussion section, a reference added, accepted
for publication in Classical and Quantum Gravit
Estimating Carbon Dynamics in an Intact Lowland Mixed Dipterocarp Forest Using a Forest Carbon Model
Intact dipterocarp forests in Asia act as crucial carbon (C) reservoirs, and it is therefore important to investigate the C dynamics in these forests. We estimated C dynamics, together with net ecosystem production (NEP), in an intact tropical dipterocarp forest of Brunei Darussalam. Fifty-four simulation units (plots; 20 m × 20 m) were established and initial C stocks were determined via direct field measurement. The C dynamics were annually simulated with a regression model and the Forest Biomass and Dead organic matter Carbon (FBDC) model. The initial C stock (Mg C·ha−1) of biomass, litter, dead wood and mineral soil were 213.1 ± 104.8, 2.0 ± 0.8, 31.3 ± 38.8, and 80.7 ± 15.5, respectively. Their annual changes (Mg C·ha−1·year−1) were 3.2 ± 1.1, 0.2 ± 0.2, −3.7 ± 6.1, and −0.3 ± 1.1, respectively. NEP was −0.6 ± 6.1 Mg C·ha−1·year−1, showing large heterogeneity among the plots. The initial C stocks of biomass and dead wood, biomass turnover rates and dead wood decay rates were elucidated as dominant factors determining NEP in a sensitivity analysis. Accordingly, investigation on those input data can constrain an uncertainty in determining NEP in the intact tropical forests
Recommended from our members
Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration
Retinitis pigmentosa comprises a group of inherited retinal photoreceptor degenerations that lead to progressive loss of vision. Although in most cases rods, but not cones, harbor the deleterious gene mutations, cones do die in this disease, usually after the main phase of rod cell loss. Rod photoreceptor death is characterized by apoptotic features. In contrast, the mechanisms and features of subsequent nonautonomous cone cell death remain largely unknown. In this study, we show that receptor-interacting protein (RIP) kinase mediates necrotic cone cell death in rd10 mice, a mouse model of retinitis pigmentosa caused by a mutation in a rod-specific gene. The expression of RIP3, a key regulator of programmed necrosis, was elevated in rd10 mouse retinas in the phase of cone but not rod degeneration. Although rd10 mice lacking Rip3 developed comparable rod degeneration to control rd10 mice, they displayed a significant preservation of cone cells. Ultrastructural analysis of rd10 mouse retinas revealed that a substantial fraction of dying cones exhibited necrotic morphology, which was rescued by Rip3 deficiency. Additionally, pharmacologic treatment with a RIP kinase inhibitor attenuated histological and functional deficits of cones in rd10 mice. Thus, necrotic mechanisms involving RIP kinase are crucial in cone cell death in inherited retinal degeneration, suggesting the RIP kinase pathway as a potential target to protect cone-mediated central and peripheral vision loss in patients with retinitis pigementosa
Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering
The present work investigated the osteogenic potential of injectable, dual thermally and chemically gelable composite hydrogels for mesenchymal stem cell (MSC) delivery in vitro and in vivo. Composite hydrogels comprising copolymer macromers of N-isopropylacrylamide were fabricated through the incorporation of gelatin microparticles (GMPs) as enzymatically digestible porogens and sites for cellular attachment. High and low polymer content hydrogels with and without GMP loading were shown to successfully encapsulate viable MSCs and maintain their survival over 28 days in vitro. GMP incorporation was also shown to modulate alkaline phosphatase production, but enhanced hydrogel mineralization along with higher polymer content even in the absence of cells. Moreover, the regenerative capacity of 2 mm thick hydrogels with GMPs only, MSCs only, or GMPs and MSCs was evaluated in vivo in an 8 mm rat critical size cranial defect for 4 and 12 weeks. GMP incorporation led to enhanced bony bridging and mineralization within the defect at each timepoint, and direct bone-implant contact as determined by microcomputed tomography and histological scoring, respectively. Encapsulation of both GMPs and MSCs enabled hydrogel degradation leading to significant tissue infiltration and osteoid formation. The results suggest that these injectable, dual-gelling cell-laden composite hydrogels can facilitate bone ingrowth and integration, warranting further investigation for bone tissue engineering
The Hamiltonian boundary term and quasi-local energy flux
The Hamiltonian for a gravitating region includes a boundary term which
determines not only the quasi-local values but also, via the boundary variation
principle, the boundary conditions. Using our covariant Hamiltonian formalism,
we found four particular quasi-local energy-momentum boundary term expressions;
each corresponds to a physically distinct and geometrically clear boundary
condition. Here, from a consideration of the asymptotics, we show how a
fundamental Hamiltonian identity naturally leads to the associated quasi-local
energy flux expressions. For electromagnetism one of the four is distinguished:
the only one which is gauge invariant; it gives the familiar energy density and
Poynting flux. For Einstein's general relativity two different boundary
condition choices correspond to quasi-local expressions which asymptotically
give the ADM energy, the Trautman-Bondi energy and, moreover, an associated
energy flux (both outgoing and incoming). Again there is a distinguished
expression: the one which is covariant.Comment: 12 pages, no figures, revtex
Deficiency of plasminogen activator inhibitor‐2 results in accelerated tumor growth
BackgroundUpregulation of the plasminogen activation system, including urokinase plasminogen activator (uPA), has been observed in many malignancies, suggesting that co‐opting the PA system is a common method by which tumor cells accomplish extracellular matrix proteolysis. PAI‐2, a serine protease inhibitor, produced from the SERPINB2 gene, inhibits circulating and extracellular matrix‐tethered uPA. Decreased SERPINB2 expression has been associated with increased tumor invasiveness and metastasis for several types of cancer. PAI‐2 deficiency has not been reported in humans and PAI‐2‐deficient (SerpinB2−/−) mice exhibit no apparent abnormalities.ObjectivesWe investigated the role of PAI‐2 deficiency on tumor growth and metastasis.MethodsTo explore the long‐term impact of PAI‐2 deficiency, a cohort of SerpinB2−/− mice were aged to >18 months, with spontaneous malignancies observed in 4/9 animals, all of apparently vascular origin. To further investigate the role of PAI‐2 deficiency in malignancy, SerpinB2−/− and wild‐type control mice were injected with either B16 melanoma or Lewis lung carcinoma tumor cells, with markedly accelerated tumor growth observed in SerpinB2−/− mice for both cell lines. To determine the relative contributions of PAI‐2 from hematopoietic or nonhematopoietically derived sources, bone marrow transplants between wild‐type C57BL/6J and SerpinB2−/− mice were performed.Results and ConclusionsOur results suggest that PAI‐2 deficiency increases susceptibility to spontaneous tumorigenesis in the mouse, and demonstrate that SerpinB2 expression derived from a nonhematopoietic compartment is a key host factor in the regulation of tumor growth in both the B16 melanoma and Lewis lung carcinoma models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163438/2/jth15054_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163438/1/jth15054.pd
- …