27,525 research outputs found

    A unified framework for Schelling's model of segregation

    Full text link
    Schelling's model of segregation is one of the first and most influential models in the field of social simulation. There are many variations of the model which have been proposed and simulated over the last forty years, though the present state of the literature on the subject is somewhat fragmented and lacking comprehensive analytical treatments. In this article a unified mathematical framework for Schelling's model and its many variants is developed. This methodology is useful in two regards: firstly, it provides a tool with which to understand the differences observed between models; secondly, phenomena which appear in several model variations may be understood in more depth through analytic studies of simpler versions.Comment: 21 pages, 3 figure

    Body fluid volume and electrolyte derangements in fasting semiannual report no. 1, dec. 1, 1964 - mar. 31, 1965

    Get PDF
    Electrolyte balance studies on rats maintained in metabolism cages - body fluid volume and electrolyte derangements by fasting in col

    Multivariable Repetitive-predictive Controllers using Frequency Decomposition

    No full text
    Repetitive control is a methodology for the tracking of a periodic reference signal. This paper develops a new approach to repetitive control systems design using receding horizon control with frequency decomposition of the reference signal. Moreover, design and implementation issues for this form of repetitive predictive control are investigated from the perspectives of controller complexity and the effects of measurement noise. The analysis is supported by a simulation study on a multi-input multi-output robot arm where the model has been constructed from measured frequency response data, and experimental results from application to an industrial AC motor

    Sequential Decision Making with Untrustworthy Service Providers

    No full text
    In this paper, we deal with the sequential decision making problem of agents operating in computational economies, where there is uncertainty regarding the trustworthiness of service providers populating the environment. Specifically, we propose a generic Bayesian trust model, and formulate the optimal Bayesian solution to the exploration-exploitation problem facing the agents when repeatedly interacting with others in such environments. We then present a computationally tractable Bayesian reinforcement learning algorithm to approximate that solution by taking into account the expected value of perfect information of an agent's actions. Our algorithm is shown to dramatically outperform all previous finalists of the international Agent Reputation and Trust (ART) competition, including the winner from both years the competition has been run

    A 2D systems approach to iterative learning control for discrete linear processes with zero Markov parameters

    No full text
    In this paper a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous con-sideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using Linear Matrix Inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable

    Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply Inelastic Scattering

    Get PDF
    Different kinematical regimes of semi-inclusive deeply inelastic scattering (SIDIS) processes correspond to different underlying partonic pictures, and it is important to understand the transition between them. This is particularly the case when there is sensitivity to intrinsic transverse momentum, in which case kinematical details can become especially important. We address the question of how to identify the current fragmentation region --- the kinematical regime where a factorization picture with fragmentation functions is appropriate. We distinguish this from soft and target fragmentation regimes. Our criteria are based on the kinematic regions used in derivations of factorization theorems. We argue that, when hard scales are of order a few GeVs, there is likely significant overlap between different rapidity regions that are normally understood to be distinct. We thus comment on the need to take this into account with more unified descriptions of SIDIS, which should span all rapidities for the produced hadron. Finally, we propose general criteria for estimating the proximity to the current region at large Q.Comment: 9 Pages, 5 figures; minor clarifications and corrections, version appearing in Physics Letters

    The development of cryogenic storage systems for space flight

    Get PDF
    Development of cryogenic storage systems for manned space fligh
    • 

    corecore