49,278 research outputs found

    Photon mass and quantum effects of the Aharonov-Bohm type

    Full text link
    The magnetic field due to the photon rest mass mphm_{ph} modifies the standard results of the Aharonov-Bohm effect for electrons, and of other recent quantum effects. For the effect involving a coherent superposition of beams of particles with opposite electromagnetic properties, by means of a table-top experiment, the limit mphx1051gm_{ph}x10^{-51}g is achievable, improving by 6 orders of magnitude that derived by Boulware and Deser for the Aharonov-Bohm effect.Comment: 5 page

    Topological defects and misfit strain in magnetic stripe domains of lateral multilayers with perpendicular magnetic anisotropy

    Get PDF
    Stripe domains are studied in perpendicular magnetic anisotropy films nanostructured with a periodic thickness modulation that induces the lateral modulation of both stripe periods and inplane magnetization. The resulting system is the 2D equivalent of a strained superlattice with properties controlled by interfacial misfit strain within the magnetic stripe structure and shape anisotropy. This allows us to observe, experimentally for the first time, the continuous structural transformation of a grain boundary in this 2D magnetic crystal in the whole angular range. The magnetization reversal process can be tailored through the effect of misfit strain due to the coupling between disclinations in the magnetic stripe pattern and domain walls in the in-plane magnetization configuration

    Intermittent quakes and record dynamics in the thermoremanent magnetization of a spin-glass

    Full text link
    A novel method for analyzing the intermittent behavior of linear response data in aging systems is presented and applied to spin-glass thermoremanent magnetization (TRM) (Rodriguez et al. Phys. Rev. Lett. 91, 037203, 2003). The probability density function (PDF) of magnetic fluctuations is shown to have an asymmetric exponential tail, demonstrating that the demagnetization process is carried by intermittent, significant, spin rearrangements or \emph{quakes}. These quakes are most pronounced shortly after the field removal, t/tw1t/t_w \approx 1 and in the non-equilibrium aging regime t/tw>>1t/t_w >>1. For a broad temperature range, we study the dependence of the TRM decay rate on tt, the time since the initial quench and on twt_w, the time at which the magnetic field is cut. The tt and twt_w dependence of the rate is extracted numerically from the data and described analytically using the assumption that the linear response is subordinated to the intermittent process which spasmodically release the initial imbalances created by the quench.Comment: 8 pages, 9 figures. The paper has been expanded and restructured, the figures have been enlarged and improved. Final version, to appear in Phy. Rev.

    Controlled nucleation of topological defects in the stripe domain patterns of Lateral multilayers with Perpendicular Magnetic Anisotropy: competition between magnetostatic, exchange and misfit interactions

    Full text link
    Magnetic lateral multilayers have been fabricated on weak perpendicular magnetic anisotropy amorphous Nd-Co films in order to perform a systematic study on the conditions for controlled nucleation of topological defects within their magnetic stripe domain pattern. A lateral thickness modulation of period ww is defined on the nanostructured samples that, in turn, induces a lateral modulation of both magnetic stripe domain periods λ\lambda and average in-plane magnetization component MinplaneM_{inplane}. Depending on lateral multilayer period and in-plane applied field, thin and thick regions switch independently during in-plane magnetization reversal and domain walls are created within the in-plane magnetization configuration coupled to variable angle grain boundaries and disclinations within the magnetic stripe domain patterns. This process is mainly driven by the competition between rotatable anisotropy (that couples the magnetic stripe pattern to in-plane magnetization) and in-plane shape anisotropy induced by the periodic thickness modulation. However, as the structural period ww becomes comparable to magnetic stripe period λ\lambda, the nucleation of topological defects at the interfaces between thin and thick regions is hindered by a size effect and stripe domains in the different thickness regions become strongly coupled.Comment: 10 pages, 7 figures, submitted to Physical Review
    corecore