134 research outputs found
Volatile Profile of Wall Rocket Baby-Leaves (Diplotaxis erucoides) Grown under Greenhouse: Main Compounds and Genotype Diversity
[EN] Wall rocket is a leafy vegetable with pungent flavor related to the presence of isothiocyanates (ITCs). Despite interest in it as a crop of high organoleptic quality, the variability of the volatile profile in the species remains unknown. Twenty-four populations grown under a greenhouse were evaluated. A considerable diversity for the total levels of volatiles was found, providing information of the aroma intensity among accessions. ITCs represented the main fraction. Allyl ITC was the main compound, and levels showed up to 6-fold difference among populations. The esters fraction was mainly represented bycis-3-hexenyl isovalerate andcis-3-hexenyl butyrate, with 20-fold differences among populations. Additionally, the content in sinigrin was evaluated as main GSL in wall rocket. Differences reached up to 13-fold. These results suggest that some populations can be used to develop highly pungent varieties, whereas some others can be selected for mild-pungent varieties, as it is the case of DER045 with low levels of ITCs and high in esters. The presence of several ITCs in the profile also suggested the presence of other novel GSLs. Overall, the work increases the knowledge in the variability of wall rocket for the volatile profile and sinigrin accumulation, a starting point for future breeding programs.C.G. thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support by means of a predoctoral FPU grant (FPU14-06798).Guijarro-Real, C.; Rodríguez Burruezo, A.; Fita, A. (2020). Volatile Profile of Wall Rocket Baby-Leaves (Diplotaxis erucoides) Grown under Greenhouse: Main Compounds and Genotype Diversity. Agronomy. 10(6):1-16. https://doi.org/10.3390/agronomy10060802S116106Guijarro-Real, C., Navarro, A., Esposito, S., Festa, G., Macellaro, R., Di Cesare, C., … Tripodi, P. (2020). Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin. Euphytica, 216(3). doi:10.1007/s10681-020-02586-xD’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides). Food Research International, 132, 109008. doi:10.1016/j.foodres.2020.109008Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Guijarro-Real, C., Adalid-Martínez, A. M., Aguirre, K., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Growing Conditions Affect the Phytochemical Composition of Edible Wall Rocket (Diplotaxis erucoides). Agronomy, 9(12), 858. doi:10.3390/agronomy9120858Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Morphological Diversity and Bioactive Compounds in Wall Rocket (Diplotaxis erucoides (L.) DC.). Agronomy, 10(2), 306. doi:10.3390/agronomy10020306Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae, 258, 108778. doi:10.1016/j.scienta.2019.108778Bell, L., Yahya, H. N., Oloyede, O. O., Methven, L., & Wagstaff, C. (2017). Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing. Food Chemistry, 221, 521-534. doi:10.1016/j.foodchem.2016.11.154Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Molecular Nutrition & Food Research, 62(18), 1700990. doi:10.1002/mnfr.201700990Sávio, A. L. V., da Silva, G. N., & Salvadori, D. M. F. (2015). Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 771, 29-35. doi:10.1016/j.mrfmmm.2014.11.004Savio, A. L. V., da Silva, G. N., Camargo, E. A. de, & Salvadori, D. M. F. (2014). Cell cycle kinetics, apoptosis rates, DNA damage and TP53 gene expression in bladder cancer cells treated with allyl isothiocyanate (mustard essential oil). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 762, 40-46. doi:10.1016/j.mrfmmm.2014.02.006Rajakumar, T., Pugalendhi, P., & Thilagavathi, S. (2015). Dose response chemopreventive potential of allyl isothiocyanate against 7,12-dimethylbenz(a)anthracene induced mammary carcinogenesis in female Sprague-Dawley rats. Chemico-Biological Interactions, 231, 35-43. doi:10.1016/j.cbi.2015.02.015Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., Raigón, M. D., & Fita, A. (2019). HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Research International, 121, 765-775. doi:10.1016/j.foodres.2018.12.054Moreno, E., Fita, A., González-Mas, M. C., & Rodríguez-Burruezo, A. (2012). HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae, 135, 87-97. doi:10.1016/j.scienta.2011.12.001Bell, L., Spadafora, N. D., Müller, C. T., Wagstaff, C., & Rogers, H. J. (2016). Use of TD-GC–TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa). Food Chemistry, 194, 626-636. doi:10.1016/j.foodchem.2015.08.043Pasini, F., Verardo, V., Caboni, M. F., & D’Antuono, L. F. (2012). Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chemistry, 133(3), 1025-1033. doi:10.1016/j.foodchem.2012.01.021Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468López-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., … Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01188Jirovetz, L., Smith, D., & Buchbauer, G. (2002). Aroma Compound Analysis of Eruca sativa (Brassicaceae) SPME Headspace Leaf Samples Using GC, GC−MS, and Olfactometry. Journal of Agricultural and Food Chemistry, 50(16), 4643-4646. doi:10.1021/jf020129nGonzález-Mas, M. C., Rambla, J. L., Alamar, M. C., Gutiérrez, A., & Granell, A. (2011). Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species. PLoS ONE, 6(7), e22016. doi:10.1371/journal.pone.0022016Rodríguez-Burruezo, A., Kollmannsberger, H., González-Mas, M. C., Nitz, S., & Fernando, N. (2010). HS-SPME Comparative Analysis of Genotypic Diversity in the Volatile Fraction and Aroma-Contributing Compounds of Capsicum Fruits from the annuum−chinense−frutescens Complex. Journal of Agricultural and Food Chemistry, 58(7), 4388-4400. doi:10.1021/jf903931tBlažević, I., & Mastelić, J. (2008). Free and bound volatiles of rocket (Eruca sativaMill.). Flavour and Fragrance Journal, 23(4), 278-285. doi:10.1002/ffj.1883Hanschen, F. S., & Schreiner, M. (2017). Isothiocyanates, Nitriles, and Epithionitriles from Glucosinolates Are Affected by Genotype and Developmental Stage in Brassica oleracea Varieties. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01095Blažević, I., & Mastelić, J. (2009). Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chemistry, 113(1), 96-102. doi:10.1016/j.foodchem.2008.07.029Miyazawa, M., Nishiguchi, T., & Yamafuji, C. (2005). Volatile components of the leaves ofBrassica rapa L. var.perviridis Bailey. Flavour and Fragrance Journal, 20(2), 158-160. doi:10.1002/ffj.1335Clemente-Villalba, J., Ariza, D., García-Garví, J. M., Sánchez-Bravo, P., Noguera-Artiaga, L., Issa-Issa, H., … Carbonell-Barrachina, Á. A. (2020). Characterization and potential use of Diplotaxis erucoides as food ingredient for a sustainable modern cuisine and comparison with commercial mustards and wasabis. European Food Research and Technology, 246(7), 1429-1438. doi:10.1007/s00217-020-03501-3Raffo, A., Masci, M., Moneta, E., Nicoli, S., Sánchez del Pulgar, J., & Paoletti, F. (2018). Characterization of volatiles and identification of odor-active compounds of rocket leaves. Food Chemistry, 240, 1161-1170. doi:10.1016/j.foodchem.2017.08.009Mastrandrea, L., Amodio, M. L., Pati, S., & Colelli, G. (2017). Effect of modified atmosphere packaging and temperature abuse on flavor related volatile compounds of rocket leaves (Diplotaxis tenuifolia L.). Journal of Food Science and Technology, 54(8), 2433-2442. doi:10.1007/s13197-017-2685-6Miyazawa, M., Maehara, T., & Kurose, K. (2002). Composition of the essential oil from the leaves ofEruca sativa. Flavour and Fragrance Journal, 17(3), 187-190. doi:10.1002/ffj.1079Petretto, G. L., Urgeghe, P. P., Massa, D., & Melito, S. (2019). Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiology and Biochemistry, 141, 30-39. doi:10.1016/j.plaphy.2019.05.012Spadafora, N. D., Amaro, A. L., Pereira, M. J., Müller, C. T., Pintado, M., & Rogers, H. J. (2016). Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry, 211, 114-123. doi:10.1016/j.foodchem.2016.04.107Spadafora, N. D., Cocetta, G., Ferrante, A., Herbert, R. J., Dimitrova, S., Davoli, D., … Müller, C. T. (2019). Short-Term Post-Harvest Stress that Affects Profiles of Volatile Organic Compounds and Gene Expression in Rocket Salad during Early Post-Harvest Senescence. Plants, 9(1), 4. doi:10.3390/plants9010004Villatoro-Pulido, M., Priego-Capote, F., Álvarez-Sánchez, B., Saha, S., Philo, M., Obregón-Cano, S., … Del Río-Celestino, M. (2013). An approach to the phytochemical profiling of rocket [Eruca sativa
(Mill.) Thell]. Journal of the Science of Food and Agriculture, 93(15), 3809-3819. doi:10.1002/jsfa.6286Bending, G. D., & Lincoln, S. D. (1999). Characterisation of volatile sulphur-containing compounds produced during decomposition of Brassica juncea tissues in soil. Soil Biology and Biochemistry, 31(5), 695-703. doi:10.1016/s0038-0717(98)00163-1Kroener, E.-M., & Buettner, A. (2017). Unravelling important odorants in horseradish ( Armoracia rusticana ). Food Chemistry, 232, 455-465. doi:10.1016/j.foodchem.2017.04.042Sultana, T., Porter, N. G., Savage, G. P., & McNeil, D. L. (2003). Comparison of Isothiocyanate Yield from Wasabi Rhizome Tissues Grown in Soil or Water. Journal of Agricultural and Food Chemistry, 51(12), 3586-3591. doi:10.1021/jf021116cA. Depree, J., M. Howard, T., & P. Savage, G. (1998). Flavour and pharmaceutical properties of the volatile sulphur compounds of Wasabi (Wasabia japonica). Food Research International, 31(5), 329-337. doi:10.1016/s0963-9969(98)00105-7Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858-2864. doi:10.1002/jsfa.4535Ruther, J. (2000). Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography−mass spectrometry. Journal of Chromatography A, 890(2), 313-319. doi:10.1016/s0021-9673(00)00618-xD’Auria, J. C., Pichersky, E., Schaub, A., Hansel, A., & Gershenzon, J. (2006). Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. The Plant Journal, 49(2), 194-207. doi:10.1111/j.1365-313x.2006.02946.xThe Good Scents Companyhttp://www.thegoodscentscompany.com/Baenas, N., Marhuenda, J., García-Viguera, C., Zafrilla, P., & Moreno, D. (2019). Influence of Cooking Methods on Glucosinolates and Isothiocyanates Content in Novel Cruciferous Foods. Foods, 8(7), 257. doi:10.3390/foods8070257Agneta, R., Lelario, F., De Maria, S., Möllers, C., Bufo, S. A., & Rivelli, A. R. (2014). Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry, 106, 178-187. doi:10.1016/j.phytochem.2014.06.019Cools, K., & Terry, L. A. (2018). The effect of processing on the glucosinolate profile in mustard seed. Food Chemistry, 252, 343-348. doi:10.1016/j.foodchem.2018.01.096Bell, L., Oruna-Concha, M. J., & Wagstaff, C. (2015). Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chemistry, 172, 852-861. doi:10.1016/j.foodchem.2014.09.116Taranto, F., Francese, G., Di Dato, F., D’Alessandro, A., Greco, B., Onofaro Sanajà, V., … Tripodi, P. (2016). Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Journal of Agricultural and Food Chemistry, 64(29), 5824-5836. doi:10.1021/acs.jafc.6b01737Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5-51. doi:10.1016/s0031-9422(00)00316-2Bell, L., Methven, L., Signore, A., Oruna-Concha, M. J., & Wagstaff, C. (2017). Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry, 218, 181-191. doi:10.1016/j.foodchem.2016.09.07
Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): A model for the enhancement of underutilized exotic fruits
The pepino (Solanum muricatum Aiton) is a neglected Andean crop that has elicited an increasing interest from exotic fruit markets. The pepino is highly diverse and, by using appropriate breeding strategies, it has been possible to develop new improved materials. Here we review more than a decade of efforts and advancements made in the genetic improvement of the pepino for several traits, with special emphasis on fruit quality. Different strategies, like the use of a wide diversity of genetic resources, exploitation of genotype × environment interaction, use of clonal hybrids, and introgression of genes from wild species, have facilitated significant developments in enhancing the commercial potential of the pepino, and have allowed the development of new cultivars and breeding materials adapted to new agroclimatic conditions. Agronomic performance of the pepino has been improved by the use of genetic parthenocarpy, selection for resistance to Tomato Mosaic Virus, and by developing hybrids, that manifested heterosis, but also did not have lower quality fruit. Breeding for quality has been focused mostly on the improvement of flavor (sweetness and aroma) and nutritional value (ascorbic acid content; AAC). Despite the limited intraspecific diversity available for sugar content, materials with high soluble solids content (SSC) have been selected. Strategies for further increases of SSC and titratable acidity have been based in the use of wild relatives. The study of variation within the cultigen was also helpful in the selection of hybrid genotypes with improved aroma profiles and high AAC values. As a result of the breeding efforts, several cultivars with improved agronomic performance and fruit quality have been produced. The use of biotechnological tools represents an opportunity to use the extensive genomic information compiled for related species, like tomato or potato, for the future improvement and enhancement of pepino quality. The results obtained in the pepino show that ample opportunities exist for improving the commercial potential of under-utilized fruits by means of breeding based on the exploitation of genetic diversity. © 2010 Elsevier Ltd.Rodríguez Burruezo, A.; Prohens Tomás, J.; Fita, A. (2011). Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): A model for the enhancement of underutilized exotic fruits. Food Research International. 44(7):1927-1935. doi:10.1016/j.foodres.2010.12.028S1927193544
Morphological diversity and bioactive compounds in wall rocket (Diplotaxis erucoides (L.) DC.)
[EN] Wall rocket is a wild vegetable with interest to become a crop. However, the information regarding morphological variability in the species is scarce, despite the interest it has received for breeding programs. In addition, evaluating the phytochemical composition can also be useful for developing materials of a high quality. In this study, forty-four populations were evaluated for selected morphoagronomic traits and contents in ascorbic acid (AA), total phenolics (TP), and nitrates (NO3¿). Wall rocket plants had, on average, an intermediate growth habit and a good response to transplant. Moderate variability, mainly for size-related traits, was found, with low to moderate heritability estimates (H2 < 0.35). A Principal Component Analysis revealed that some materials may be selected for differenced traits. On the other hand, wall rocket materials had, on average, high contents in AA (53 mg 100 g¿1) and TP (116 mg CAE 100 g¿1) but also accumulated high levels of NO3¿ (891 mg 100 g¿1). Significant positive correlations were found for AA and TP, which could be exploited for increasing the antioxidant activity and properties of the final product. We provide new information on the variation of wall rocket for traits of morphological and phytochemical interest, which together with other traits, such as the profile of glucosinolates, can be useful for the selection of materials in future breeding programs.C.G. thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support by means of a predoctoral FPU grant (FPU14-06798). Authors also thank the "Banco de Germoplasma Vegetal-UPM Cesar Gomez Campo" (Madrid, Spain) for transfer of seeds.Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2020). Morphological diversity and bioactive compounds in wall rocket (Diplotaxis erucoides (L.) DC.). Agronomy. 10(2):1-14. https://doi.org/10.3390/agronomy10020306S114102Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841Shin, T., Fujikawa, K., Moe, A. Z., & Uchiyama, H. (2018). Traditional knowledge of wild edible plants with special emphasis on medicinal uses in Southern Shan State, Myanmar. Journal of Ethnobiology and Ethnomedicine, 14(1). doi:10.1186/s13002-018-0248-1Łuczaj, Ł., Pieroni, A., Tardío, J., Pardo-de-Santayana, M., Sõukand, R., Svanberg, I., & Kalle, R. (2012). Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Societatis Botanicorum Poloniae, 81(4), 359-370. doi:10.5586/asbp.2012.031Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Spadafora, N. D., Amaro, A. L., Pereira, M. J., Müller, C. T., Pintado, M., & Rogers, H. J. (2016). Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry, 211, 114-123. doi:10.1016/j.foodchem.2016.04.107Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020Disciglio, G., Tarantino, A., Frabboni, L., Gagliardi, A., Giuliani, M. M., Tarantino, E., & Gatta, G. (2017). Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy, 11. doi:10.4081/ija.2017.1036Schiattone, M. I., Viggiani, R., Di Venere, D., Sergio, L., Cantore, V., Todorovic, M., … Candido, V. (2018). Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Scientia Horticulturae, 229, 182-192. doi:10.1016/j.scienta.2017.10.036Bondonno, C. P., Blekkenhorst, L. C., Liu, A. H., Bondonno, N. P., Ward, N. C., Croft, K. D., & Hodgson, J. M. (2018). Vegetable-derived bioactive nitrate and cardiovascular health. Molecular Aspects of Medicine, 61, 83-91. doi:10.1016/j.mam.2017.08.001Lundberg, J. O., Carlström, M., & Weitzberg, E. (2018). Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metabolism, 28(1), 9-22. doi:10.1016/j.cmet.2018.06.007Herraiz, F. J., Vilanova, S., Andújar, I., Torrent, D., Plazas, M., Gramazio, P., & Prohens, J. (2015). Morphological and molecular characterization of local varieties, modern cultivars and wild relatives of an emerging vegetable crop, the pepino (Solanum muricatum), provides insight into its diversity, relationships and breeding history. Euphytica, 206(2), 301-318. doi:10.1007/s10681-015-1454-8BGV-UPM. Coleccioneshttp://www.bancodegermoplasma.upm.es/colecciones.html.Taranto, F., Francese, G., Di Dato, F., D’Alessandro, A., Greco, B., Onofaro Sanajà, V., … Tripodi, P. (2016). Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Journal of Agricultural and Food Chemistry, 64(29), 5824-5836. doi:10.1021/acs.jafc.6b01737Bell, L., Methven, L., Signore, A., Oruna-Concha, M. J., & Wagstaff, C. (2017). Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry, 218, 181-191. doi:10.1016/j.foodchem.2016.09.076Herraiz, F. J., Vilanova, S., Plazas, M., Gramazio, P., Andújar, I., Rodríguez-Burruezo, A., … Prohens, J. (2015). Phenological growth stages of pepino (Solanum muricatum) according to the BBCH scale. Scientia Horticulturae, 183, 1-7. doi:10.1016/j.scienta.2014.12.008Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013Rodríguez, G. R., Moyseenko, J. B., Robbins, M. D., Huarachi Morejón, N., Francis, D. M., & van der Knaap, E. (2010). Tomato Analyzer: A Useful Software Application to Collect Accurate and Detailed Morphological and Colorimetric Data from Two-dimensional Objects. Journal of Visualized Experiments, (37). doi:10.3791/1856Guijarro-Real, C., Prohens, J., Rodriguez-Burruezo, A., Adalid-Martínez, A. M., López-Gresa, M. P., & Fita, A. (2019). Wild edible fool’s watercress, a potential crop with high nutraceutical properties. PeerJ, 7, e6296. doi:10.7717/peerj.6296Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051Rodríguez-Burruezo, A., Prohens, J., & Nuez, F. (2002). Genetic Analysis of Quantitative Traits in Pepino (Solanum muricatum) in Two Growing Seasons. Journal of the American Society for Horticultural Science, 127(2), 271-278. doi:10.21273/jashs.127.2.271Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9Mousavizadeh, S. J., Hassandokht, M. R., & Kashi, A. (2015). Multivariate analysis of edible Asparagus species in Iran by morphological characters. Euphytica, 206(2), 445-457. doi:10.1007/s10681-015-1508-yD’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068Salvatore, S., Pellegrini, N., Brenna, O. V., Del Rio, D., Frasca, G., Brighenti, F., & Tumino, R. (2005). Antioxidant Characterization of Some Sicilian Edible Wild Greens. Journal of Agricultural and Food Chemistry, 53(24), 9465-9471. doi:10.1021/jf051806rBennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites in Eruca sativa (Salad Rocket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756tFrancisco, M., Velasco, P., Moreno, D. A., García-Viguera, C., & Cartea, M. E. (2010). Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Research International, 43(5), 1455-1463. doi:10.1016/j.foodres.2010.04.024Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Molecular Nutrition & Food Research, 62(18), 1700990. doi:10.1002/mnfr.201700990Bianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7Tang, L., Luo, W., Tian, S., He, Z., Stoffella, P. J., & Yang, X. (2016). Genotypic differences in cadmium and nitrate co-accumulation among the Chinese cabbage genotypes under field conditions. Scientia Horticulturae, 201, 92-100. doi:10.1016/j.scienta.2016.01.040Bahadoran, Z., Mirmiran, P., Jeddi, S., Azizi, F., Ghasemi, A., & Hadaegh, F. (2016). Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats. Journal of Food Composition and Analysis, 51, 93-105. doi:10.1016/j.jfca.2016.06.00
Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides)
[EN] Wall rocket (Diplotaxis erucoides) is a wild edible herb traditionally consumed in the Mediterranean regions with a characteristic, pungent flavour. However, little is known about its acceptance as a potential new crop. In the present study, an hedonic test with 98 volunteers was performed in order to evaluate the potential of wall rocket as a new crop. Three products were tested corresponding to microgreens, seedlings and baby-leaves. The volatile constituents were also studied due to their probable influence on acceptance, and compared to Dijon's mustard and wasabi. The degree of acceptance was mainly related to taste and pungency. Microgreens were well accepted, whereas seedlings and baby-leaves were mainly appreciated by individuals that enjoy pungent tastes. The purchase intent was also highly related to the acceptance of taste and pungency. The volatiles profile revealed that wall rocket was rich in allyl isothiocyanate, like mustard and wasabi. This compound may be greatly responsible of the relationship between the acceptance of mustard, wasabi and wall rocket. Microgreens displayed the highest levels of isothiocyanates, although the quantity of product tested by panellists did not probably allow the appreciation of such compounds. In baby-leaves, a significant decrease in isothiocyanates GC area and relative abundances was observed. These results suggest that wall rocket microgreens would be accepted by a significant proportion of the general public since pungency is lowly perceived in the product, despite its high levels of isothiocyanates. By contrast, baby-leaves may become a crop for a cohort of consumers that enjoy pungent flavours.C. Guijarro-Real thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for its financial support with a PhD grant (FPU14-06798). Authors also thank Dr. A.M. Adalid and Dr. C.K. Pires for support in the tasting session, and Ms. E. Moreno for assistance with the GC-MS analysis.Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2020). Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides). Food Research International. 132:1-9. https://doi.org/10.1016/j.foodres.2020.109008S19132Agneta, R., Lelario, F., De Maria, S., Möllers, C., Bufo, S. A., & Rivelli, A. R. (2014). Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry, 106, 178-187. doi:10.1016/j.phytochem.2014.06.019Angelino, D., Dosz, E. B., Sun, J., Hoeflinger, J. L., Van Tassell, M. L., Chen, P., … Jeffery, E. H. (2015). Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00831Bell, L., Methven, L., Signore, A., Oruna-Concha, M. J., & Wagstaff, C. (2017). Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry, 218, 181-191. doi:10.1016/j.foodchem.2016.09.076Bell, L., Methven, L., & Wagstaff, C. (2017). The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chemistry, 222, 6-17. doi:10.1016/j.foodchem.2016.11.153Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Molecular Nutrition & Food Research, 62(18), 1700990. doi:10.1002/mnfr.201700990Bell, L., Spadafora, N. D., Müller, C. T., Wagstaff, C., & Rogers, H. J. (2016). Use of TD-GC–TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa). Food Chemistry, 194, 626-636. doi:10.1016/j.foodchem.2015.08.043Bell, L., & Wagstaff, C. (2017). Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. Journal of Agricultural and Food Chemistry, 65(43), 9379-9403. doi:10.1021/acs.jafc.7b03628Bell, L., Yahya, H. N., Oloyede, O. O., Methven, L., & Wagstaff, C. (2017). Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing. Food Chemistry, 221, 521-534. doi:10.1016/j.foodchem.2016.11.154Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites in Eruca sativa (Salad Rocket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756tBonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300CARDELLO, A. V., & SCHUTZ, H. G. (2004). RESEARCH NOTE NUMERICAL SCALE-POINT LOCATIONS FOR CONSTRUCTING THE LAM (LABELED AFFECTIVE MAGNITUDE) SCALE. Journal of Sensory Studies, 19(4), 341-346. doi:10.1111/j.1745-459x.2004.tb00152.xCavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022Dinkova-Kostova, A. T., & Kostov, R. V. (2012). Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 18(6), 337-347. doi:10.1016/j.molmed.2012.04.003Dinnella, C., Torri, L., Caporale, G., & Monteleone, E. (2014). An exploratory study of sensory attributes and consumer traits underlying liking for and perceptions of freshness for ready to eat mixed salad leaves in Italy. Food Research International, 59, 108-116. doi:10.1016/j.foodres.2014.02.009Evans, R., & Irving, M. (2018). Forager. https://www.forager.org.uk/ (accessed 30th March 2019).Gols, R., van Dam, N. M., Reichelt, M., Gershenzon, J., Raaijmakers, C. E., Bullock, J. M., & Harvey, J. A. (2018). Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology, 28(3), 77-89. doi:10.1007/s00049-018-0258-4Guarrera, P. M., & Savo, V. (2013). Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. Journal of Ethnopharmacology, 146(3), 659-680. doi:10.1016/j.jep.2013.01.036Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Guijarro-Real, C., Adalid-Martínez, A. M., Aguirre, K., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Growing Conditions Affect the Phytochemical Composition of Edible Wall Rocket (Diplotaxis erucoides). Agronomy, 9(12), 858. doi:10.3390/agronomy9120858Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., & Fita, A. (2018). Importance of the growing system in the leaf morphology of Diplotaxis erucoides. Acta Horticulturae, (1202), 25-32. doi:10.17660/actahortic.2018.1202.4Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae, 258, 108778. doi:10.1016/j.scienta.2019.108778Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., Raigón, M. D., & Fita, A. (2019). HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Research International, 121, 765-775. doi:10.1016/j.foodres.2018.12.054Huang, L., Li, B.-L., He, C.-X., Zhao, Y.-J., Yang, X.-L., Pang, B., … Shan, Y.-J. (2018). Sulforaphane inhibits human bladder cancer cell invasion by reversing epithelial-to-mesenchymal transition via directly targeting microRNA-200c/ZEB1 axis. Journal of Functional Foods, 41, 118-126. doi:10.1016/j.jff.2017.12.034Ishida, M., Hara, M., Fukino, N., Kakizaki, T., & Morimitsu, Y. (2014). Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Science, 64(1), 48-59. doi:10.1270/jsbbs.64.48Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7López-Chillón, M. T., Carazo-Díaz, C., Prieto-Merino, D., Zafrilla, P., Moreno, D. A., & Villaño, D. (2019). Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clinical Nutrition, 38(2), 745-752. doi:10.1016/j.clnu.2018.03.006López-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., … Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01188Łuczaj, Ł., Pieroni, A., Tardío, J., Pardo-de-Santayana, M., Sõukand, R., Svanberg, I., & Kalle, R. (2012). Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Societatis Botanicorum Poloniae, 81(4), 359-370. doi:10.5586/asbp.2012.031MA, Y., SONG, D., WANG, Z., JIANG, J., JIANG, T., CUI, F., & FAN, X. (2010). EFFECT OF ULTRAHIGH PRESSURE TREATMENT ON VOLATILE COMPOUNDS IN GARLIC. Journal of Food Process Engineering, 34(6), 1915-1930. doi:10.1111/j.1745-4530.2009.00502.xMetsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Molina-Calle, M., Priego-Capote, F., & Luque de Castro, M. D. (2017). Headspace−GC–MS volatile profile of black garlic vs fresh garlic: Evolution along fermentation and behavior under heating. LWT, 80, 98-105. doi:10.1016/j.lwt.2017.02.010Moreno, E., Fita, A., González-Mas, M. C., & Rodríguez-Burruezo, A. (2012). HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae, 135, 87-97. doi:10.1016/j.scienta.2011.12.001Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858-2864. doi:10.1002/jsfa.4535Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020Savio, A. L. V., da Silva, G. N., Camargo, E. A. de, & Salvadori, D. M. F. (2014). Cell cycle kinetics, apoptosis rates, DNA damage and TP53 gene expression in bladder cancer cells treated with allyl isothiocyanate (mustard essential oil). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 762, 40-46. doi:10.1016/j.mrfmmm.2014.02.006SCHUTZ, H. G., & CARDELLO, A. V. (2001). A LABELED AFFECTIVE MAGNITUDE (LAM) SCALE FOR ASSESSING FOOD LIKING/DISLIKING. Journal of Sensory Studies, 16(2), 117-159. doi:10.1111/j.1745-459x.2001.tb00293.xSdiri, S., Rambla, J. L., Besada, C., Granell, A., & Salvador, A. (2017). Changes in the volatile profile of citrus fruit submitted to postharvest degreening treatment. Postharvest Biology and Technology, 133, 48-56. doi:10.1016/j.postharvbio.2017.07.001Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841Shin, T., Fujikawa, K., Moe, A. Z., & Uchiyama, H. (2018). Traditional knowledge of wild edible plants with special emphasis on medicinal uses in Southern Shan State, Myanmar. Journal of Ethnobiology and Ethnomedicine, 14(1). doi:10.1186/s13002-018-0248-1Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. Journal of Agricultural and Food Chemistry, 60(31), 7644-7651. doi:10.1021/jf300459
Potential of wall rocket (Diplotaxis erucoides) as a new crop: influence of the growing conditions on the visual quality of the final product
[EN] Wild edible plants can be used for developing new crops and diversifying food markets. Wall rocket (Diplotaxis erucoides) is an annual weed with potential as a new crop. The present study aims at evaluating the effects of different growing conditions in the visual quality of this potential new crop. We evaluated eleven accessions of wall rocket, together with commercial rocket accessions (Eruca sativa and D. tenuifolia). Experiments were simultaneously conducted under field and greenhouse systems, and performed during two seasons. Fifteen descriptors related to leaf size, colour and shape were evaluated. Analysis of variance detected significant differences in size and shape among the three species studied, revealing the distinctiveness of wall rocket from the other rocket crops. This distinctiveness may enhance its establishment as a new crop. Comparison between the wall rocket accessions was also performed. There was relatively low morphological diversity among them. By contrast, the growing conditions had a high effect on the visual quality, especially for colour related traits and intensity of lobation, and also in the flowering time. As a consequence, the heritability estimates were low to moderate. The principal component analysis (PCA) clustered accessions according to the growing conditions, thus reinforcing the importance of environment in the morphology of wall rocket. The most promising quality of the leaves was obtained under field conditions, where the bright green colour and intensity of lobation were enhanced. In particular, accession DER006-1 was identified as a good candidate for developing a new cultivar. These results establish a basis for the management of wall rocket as a new crop. At the same time, results regarding the low diversity registered for morphology in the accessions evaluated have important implications for future breeding programmes of wall rocket.C. Guijarro-Real is grateful to the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the predoctoral FPU grant (FPU14-06798). Authors also thank Dr. A. M. Adalid-Martinez, Ms. K. Aguirre, and Ms. S. Benicka for helping in the field tasks.Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae. 258:1-9. https://doi.org/10.1016/j.scienta.2019.108778S19258Araj, S.-E., & Wratten, S. D. (2015). Comparing existing weeds and commonly used insectary plants as floral resources for a parasitoid. Biological Control, 81, 15-20. doi:10.1016/j.biocontrol.2014.11.003Bell, L., Methven, L., & Wagstaff, C. (2017). The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chemistry, 222, 6-17. doi:10.1016/j.foodchem.2016.11.153Bell, L., & Wagstaff, C. (2014). Glucosinolates, Myrosinase Hydrolysis Products, and Flavonols Found in Rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agricultural and Food Chemistry, 62(20), 4481-4492. doi:10.1021/jf501096xBianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7Bonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300Buitrago Acevedo, M. F., Groen, T. A., Hecker, C. A., & Skidmore, A. K. (2017). Identifying leaf traits that signal stress in TIR spectra. ISPRS Journal of Photogrammetry and Remote Sensing, 125, 132-145. doi:10.1016/j.isprsjprs.2017.01.014Caruso, G., Parrella, G., Giorgini, M., & Nicoletti, R. (2018). Crop Systems, Quality and Protection of Diplotaxis tenuifolia. Agriculture, 8(4), 55. doi:10.3390/agriculture8040055Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068D’Amelia, V., Aversano, R., Ruggiero, A., Batelli, G., Appelhagen, I., Dinacci, C., … Carputo, D. (2017). Subfunctionalization of duplicate MYB genes in Solanum commersonii
generated the cold-induced ScAN2
and the anthocyanin regulator ScAN1. Plant, Cell & Environment, 41(5), 1038-1051. doi:10.1111/pce.12966D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020Egea-Gilabert, C., Niñirola, D., Conesa, E., Candela, M. E., & Fernández, J. A. (2013). Agronomical use as baby leaf salad of Silene vulgaris based on morphological, biochemical and molecular traits. Scientia Horticulturae, 152, 35-43. doi:10.1016/j.scienta.2013.01.018Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051Figàs, M. R., Prohens, J., Casanova, C., Fernández-de-Córdova, P., & Soler, S. (2018). Variation of morphological descriptors for the evaluation of tomato germplasm and their stability across different growing conditions. Scientia Horticulturae, 238, 107-115. doi:10.1016/j.scienta.2018.04.039Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. doi:10.1016/j.wace.2015.08.001Martínez-Laborde, J. B., Pita-Villamil, J. M., & Pérez-García, F. (2007). Short communication. Secondary dormancy in Diplotaxis erucoides: a possible adaptative strategy as an annual weed. Spanish Journal of Agricultural Research, 5(3), 402. doi:10.5424/sjar/2007053-265Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Rodríguez-Burruezo, A., Prohens, J., & Nuez, F. (2002). Genetic Analysis of Quantitative Traits in Pepino (Solanum muricatum) in Two Growing Seasons. Journal of the American Society for Horticultural Science, 127(2), 271-278. doi:10.21273/jashs.127.2.271Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2015). Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. Journal of Food Science and Technology, 53(1), 721-729. doi:10.1007/s13197-015-2030-xStagnari, F., Di Mattia, C., Galieni, A., Santarelli, V., D’Egidio, S., Pagnani, G., & Pisante, M. (2018). Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil. Industrial Crops and Products, 122, 277-289. doi:10.1016/j.indcrop.2018.05.073Stommel, J. R., Whitaker, B. D., Haynes, K. G., & Prohens, J. (2015). Genotype × environment interactions in eggplant for fruit phenolic acid content. Euphytica, 205(3), 823-836. doi:10.1007/s10681-015-1415-2Taranto, F., Francese, G., Di Dato, F., D’Alessandro, A., Greco, B., Onofaro Sanajà, V., … Tripodi, P. (2016). Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Journal of Agricultural and Food Chemistry, 64(29), 5824-5836. doi:10.1021/acs.jafc.6b01737Voss-Fels, K., & Snowdon, R. J. (2015). Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnology Journal, 14(4), 1086-1094. doi:10.1111/pbi.1245
Turia pepino
Turia is a new salad pepino cultivar adapted to greenhouse cultivation in a wide range of environments with high yield and improved fruit quality. Its fruit is ovate in shape and has golden yellow skin covered with purple stripes, mild flavour and intense aroma. Turia is the first pepino cultivar tolerant to tomato mosaic virus.Rodríguez Burruezo, A.; Prohens Tomás, J.; Leiva-Brondo, M.; Nuez Viñals, F. (2004). Turia pepino. Canadian Journal of Plant Science. 84(2):603-606. doi:10.4141/P03-108S60360684
Genetic diversity, population structure and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS)
[EN] Pepper (Capsicum spp.) is one of the most important vegetable crops; however, pepper genomic studies lag behind those of other important Solanaceae. Here we present the results of a high-throughput genotyping-by-sequencing (GBS) study of a collection of 190 Capsicum spp. accessions, including 183 of five cultivated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens) and seven of the wild form C. annuum var. glabriusculum. Sequencing generated 6,766,231 high-quality read tags, of which 40.7% were successfully aligned to the reference genome. SNP calling yielded 4083 highly informative segregating SNPs. Genetic diversity and relationships of a subset of 148 accessions, of which a complete passport information was available, was studied using principal components analysis (PCA), discriminant analysis of principal components (DAPC), and phylogeny approaches. C. annuum, C. baccatum, and C. chinense were successfully separated by all methods. Our population was divided into seven clusters by DAPC, where C. frutescens accessions were clustered together with C. chinense. C. annuum var. glabriusculum accessions were spread into two distinct genetic pools, while European accessions were admixed and closely related. Separation of accessions was mainly associated to differences in fruit characteristics and origin. Phylogeny studies showed a close relation between Spanish and Mexican accessions, supporting the hypothesis that the first arose from a main genetic flow from the latter. Tajima's D statistic values were consistent with positive selection in the C. annuum clusters, possibly related to domestication or selection towards traits of interest. This work provides comprehensive and relevant information on the origin and relationships of Spanish landraces and for future association mapping studies in pepper.This work has been financed by INIA projects RTA2013-00022-C02, RTA2014-00041-C02-02, and RF2010-00025-00-00, FEDER funds. Authors are also grateful to the different Research Institutions, scientists, and breeders, and PDOs and GPIs Regulatory Boards, included on Supplementary Data: Table 1 for providing part of the materials studied here.Pereira-Días, L.; Vilanova Navarro, S.; Fita, A.; Prohens Tomás, J.; Rodríguez Burruezo, A. (2019). Genetic diversity, population structure and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Horticulture Research. 6:1-13. https://doi.org/10.1038/s41438-019-0132-8S1136FAO. FAOSTAT Statistics Database. http://www.fao.org/faostat/ (2018). Accessed 20 Aug 2018.Moscone, E. A. et al. The evolution of chili peppers (Capsicum—Solanaceae): a cytogenetic perspective. Acta Hortic. 745, 137–169 (2007).DeWitt, D. & Bosland, P. W. Peppers of the World: An Identification Guide (Ten Speed Press, Berkeley, California, US, 1996).Nuez, F., Ortega, R. G. & García, J. C. El Cultivo de Pimientos, Chiles y Ajies (Mundi-Prensa, Madrid, Spain, 2003).Kraft, K. H. The Domestication of the Chile Pepper, Capsicum annuum: Genetic, Ecological, and Anthropogenic Patterns of Genetic Diversity. ProQuest Dissertations and Theses (2009).Onus, A. N. & Pickersgill, B. Unilateral incompatibility in Capsicum (Solanaceae): occurrence and taxonomic distribution. Ann. Bot. 94, 289–295 (2004).Tong, N. & Bosland, P. W. Capsicum tovarii, a new member of the Capsicum baccatum complex. Euphytica 109, 71–77 (1999).Ince, A. G., Karaca, M. & Onus, A. N. Genetic relationships within and between Capsicum species. Biochem. Genet. 48, 83–95 (2010).Zijlstra, S., Purimahua, C. & Lindhout, P. Pollen tube growth in interspecific crosses between Capsicum species. Euphytica 26, 585–586 (1991).Yoon, J., Cheol Yang, D., Wahng Do, J. & Guen Park, H. Overcoming two post-fertilization genetic barriers in interspecific hybridization between Capsicum annuum and C. baccatum for introgression of anthracnose resistance. Breed. Sci. 56, 31–38 (2006).Manzur, J. P., Fita, A., Prohens, J. & Rodríguez-Burruezo, A. Successful wide hybridization and introgression breeding in a diverse set of common peppers (Capsicum annuum) using different cultivated ají (Capsicum baccatum) accessions as donor parents. PLoS ONE 10, e0144142 (2015).González-Pérez, S. et al. New insights into Capsicum spp. relatedness and the diversification process of Capsicum annuum in Spain. PLoS ONE 9, e116276 (2014).Crosby, K. M. in Vegetables II (eds. Prohens, J., Nuez, F. & Carena, M. J.) 221–248 (Springer US, 2008).Rodríguez-Burruezo, A., Pereira-Dias, L. & Fita, A. in Variedades Locales de Pimiento en España y Su Mejora Genética (eds. Galarreta de, J. I. R., Prohens, J. & Tierno, R.) 405–426 (Gráficas Irudi, Vitoria-Gasteiz, Spain, 2016).Hammer, K., Arrowsmith, N. & Gladis, T. Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften 90, 241–250 (2003).Brugarolas, M., Martinez-Carrasco, L., Martinez-Poveda, A. & Ruiz, J. J. A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Span. J. Agric. Res. 7, 294–304 (2009).Ashrafi, H. et al. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genom. 13, 571 (2012).Qin, C. et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc. Natl Acad. Sci. USA 111, 5135–5140 (2014).Park, M. et al. Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. Plant J. 69, 1018–1029 (2012).Kim, S. et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 46, 270–278 (2014).Prohens, J. et al. Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213, 158 (2017).Ibiza, V. P., Blanca, J., Cañizares, J. & Nuez, F. Taxonomy and genetic diversity of domesticated Capsicum species in the Andean region. Genet. Resour. Crop Evol. 59, 1077–1088 (2012).He, J. et al. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 5, 484 (2014).Glaubitz, J. C. et al. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9, e90346 (2014).Poland, J. & Rife, T. Genotyping-by-Sequencing for plant breeding and genetics. Plant Genome 5, 92–102 (2012).Gardner, K. M. et al. Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3 4, 1681–1687 (2014).Chung, Y. S., Choi, S. C., Jun, T. H. & Kim, C. Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Hortic. Environ. Biotechnol. 58, 425–431 (2017).Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).Taranto, F., D’Agostino, N., Greco, B., Cardi, T. & Tripodi, P. Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing. BMC Genom. 17, 943 (2016).Taitano, N. et al. Genomewide genotyping of a novel Mexican Chile Pepper collection illuminates the history of landrace differentiation after Capsicum annuum L. domestication. Evol. Appl. https://doi.org/10.1111/eva.12651 (2018).Nimmakayala, P. et al. Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms. Front. Plant Sci. 7, 1646 (2016).Nimmakayala, P. et al. Genome-wide diversity and association mapping for capsaicinoids and fruit weight in Capsicum annuum L. Sci. Rep. 6, 38081 (2016).Doyle, J. J. & Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus 12, 13–15 (1990).Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).R Development Core Team. R: A Language and Environment for Statistical Computing (2009).Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).Wickham, H ggplot2: Elegant Graphics for Data Analysis (Springer, US, 2016).Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).Saitou, N. & Nei, M. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).Weir, B. & Clark Cockerham, C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).Ahn, Y. K. et al. Whole genome resequencing of Capsicum baccatum and Capsicum annuum to discover single nucleotide polymorphism related to powdery mildew resistance. Sci. Rep. 8, 5188 (2018).Sonah, H. et al. An improved Genotyping by Sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8, e54603 (2013).Hulse-Kemp, A. M. et al. Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library. Hortic. Res. 5, 4 (2018).Wakeley, J. The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Tree 11, 158–163 (1996).Eshbaugh, W. H. Genetic and biochemical systematic studies of chili peppers (Capsicum - Solanaceae). Bull. Torre. Bot. Club 102, 396 (1975).Raw, A. Foraging behavior of wild bees at hot pepper flowers (Capsicum annuum) and its possible influence on cross pollination. Ann. Bot. 85, 487–492 (2000).Cheng, J. et al. Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.). Sci. Rep. 6, 33293 (2016).Lee, H. Y. et al. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. BMC Genet. 17, 142 (2016).Nicolaï, M., Cantet, M., Lefebvre, V., Sage-Palloix, A. M. & Palloix, A. Genotyping a large collection of pepper (Capsicum spp.) with SSR loci brings new evidence for the wild origin of cultivated C. annuum and the structuring of genetic diversity by human selection of cultivar types. Genet. Resour. Crop Evol. 60, 2375–2390 (2013).Andrews, J. Peppers: The Domesticated Capsicums (University of Texas Press, Austin, Texas, US, 1995).Hayano-Kanashiro, C., Gámez-Meza, N. & Medina-Juárez, L. Á. Wild pepper Capsicum annuum L. var. glabriusculum: taxonomy, plant morphology, distribution, genetic diversity, genome sequencing, and phytochemical compounds. Crop Sci. 56, 1–11 (2016).McLeod, M. J., Guttman, S. I. & Eshbaugh, W. H. Early evolution of chili peppers (Capsicum). Econ. Bot. 36, 361–368 (1982).Pickersgill, B. Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann. Bot. 100, 925–940 (2007).Walsh, B. M. & Hoot, S. B. Phylogenetic relationships of Capsicum (Solanaceae) using DNA sequences from two noncoding regions: the chloroplast atpB‐rbcL spacer region and nuclear waxy introns. Int. J. Plant Sci. 162, 1409–1418 (2001).McLeod, M. J., Eshbaugh, W. H. & Guttman, S. I. An electrophoretic study of Capsicum (Solanaceae): the purple flowered taxa. Bull. Torre. Bot. Club 106, 326 (1979).Kraft, K. H. et al. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl Acad. Sci. USA 111, 6165–6170 (2014).Bosland, P. W. & Votava, E. J. Peppers: Vegetable and Spice Capsicums (CABI, New York, US, 2012).Rodríguez-Burruezo, A., Kollmannsberger, H., González-Mas, M. C., Nitz, S. & Nuez, F. HS-SPME comparative analysis of genotypic diversity in the volatile fraction and aroma-contributing compounds of Capsicum fruits from the annuum–chinense–frutescens complex. J. Agric. Food Chem. 58, 4388–4400 (2010).Wang, L., Li, J., Zhao, J. & He, C. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae. Front. Plant Sci. 6, 248 (2015).Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: defining, estimating and interpreting Fst. Nat. Rev. Genet. 10, 639–650 (2009).Barchi, L., Lefebvre, V., Sage-Palloix, A. M., Lanteri, S. & Palloix, A. QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor. Appl. Genet. 118, 1157–1171 (2009).Han, K. et al. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Res. 23, 81–91 (2016).Hill, T. A. et al. Regions underlying population structure and the genomics of organ size determination in Capsicum annuum. Plant Genome 10, https://doi.org/10.3835/plantgenome2017.03.0026 (2017).Yarnes, S. C. et al. Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific Capsicum RIL population. Genome 56, 61–74 (2013).Rao, G. U., Ben Chaim, A., Borovsky, Y. & Paran, I. Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor. Appl. Genet. 106, 1457–1466 (2003).Chaim, A., Borovsky, Y., De Jong, W. & Paran, I. Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor. Appl. Genet. 106, 889–894 (2003).Moses, M. & Umaharan, P. Genetic structure and phylogenetic relationships of Capsicum chinense. J. Am. Soc. Hortic. Sci. 137, 250–262 (2012).Albrecht, E., Zhang, D., Saftner, R. A. & Stommel, J. R. Genetic diversity and population structure of Capsicum baccatum genetic resources. Genet. Resour. Crop Evol. 59, 517–538 (2012)
In vitro germination and growth protocols of the ornamental Lophophora williamsii (Lem.) Coult. as a tool for protecting endangered wild populations
[EN] Lophophora williamsii is an ornamental slow growth cactus highly appreciated by cacti growers and hobbyists. Its demand is often satisfied through illegal collection of wild plants and many populations are threatened with extinction. Thus, an efficient in vitro protocol without plant growth regulators will be of great interest for conservation purposes of this cactus. Eight different germination media, combining Murashige and Skoog medium (MS, full and half-strength), sucrose (20 and 30gL(-1)) and agar (8 and 10gL(-1)), were used to study germination rate, number of seedlings with areoles and initial seedling development. Germination rates among culture media only differed significantly in the first 14 days after sowing (DAS), reaching 67-75% at the end of the assay (49 DAS). Remarkable interactions among media components were detected, and 20 g L-1 sucrose and 8gL(-1) agar combination gave the highest performance for both size and number of areoles. Following germination assay, a growth assay was conducted during 105 days using three growth media (GrM) at different sucrose concentration (15, 30 and 45gL(-1)) to evaluate the increase in seedling size and number of areoles. Regardless of their initial size, 15 g L-1 sucrose provided the best results for both traits. Size increase was higher in the 4-5 mm seedling group, while increase in areoles was greater in 2-3 mm seedlings. It was possible to develop an in vitro protocol, in absence of plant growth regulators, which allows maximizing. L williamsii germination and growth during its first stages of development, which may increase the availability of plants in the market and avoid exhaustion of wild populations. Furthermore, plants grown ex situ could be reintroduced in endangered natural populations.Cortés Olmos, C.; Gurrea-Ysasi, G.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2018). In vitro germination and growth protocols of the ornamental Lophophora williamsii (Lem.) Coult. as a tool for protecting endangered wild populations. Scientia Horticulturae. 237:120-127. doi:10.1016/j.scienta.2018.03.064S12012723
Influence of the Growing Conditions in the Content of Vitamin C in Diplotaxis erucoides
Diplotaxis erucoides is an edible plant with potential for marketing. Here, we analysed the influence of the growing conditions in this species, D. tenuifolia and Eruca sativa, and studied the relation among the ascorbic (AA) and dehydroascorbic (DHA) acid forms. Plants were grown in the late winter-spring season under two conditions, greenhouse and field. The contents in AA, DHA and vitamin C (VC) were analysed by HPLC. The content of VC and AA were, in general, remarkable higher in the plants grown in the field. On the other hand, the mean percentage of DHA was less than 11%, being in this case higher for plants grown in the greenhouse. Thus, growing this potential crop in the field seems a better option in order to increase the content in VC, being AA the main form present at the moment of gathering
HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest
[EN] Water celery (Apium nodiflorum) is a wild plant traditionally harvested in some Mediterranean areas for being consumed raw. Despite its appreciated organoleptic properties, the aromatic profile of the fresh vegetable remains to be studied. In the present study, volatile compounds from five wild populations were extracted by the headspace-solid phase microextraction technique, analysed by gas cromatography-mass spectrometry, and compared to related crops. The wild species had a high number of aromatic compounds. It was rich in monoterpenes (49.2%), sesquiterpenes (39.4%) and phenylpropanoids (9.6%), with quantitative differences among populations, in absolute terms and relative abundance. On average, germacrene D was the main compound (16.6%), followed by allo-ocimene (11.9%) and limonene (11.1%). Only in one population, the levels of limonene were greater than those of germacrene D. Among phenylpropanoids, dillapiol displayed the highest levels, and co-occurred with myristicin in all populations except one. These differences may have a genetic component, which would indicate the possibility of establishing selection programmes for the development of water celery as a crop adapted to different market preferences. On the other hand, comparison with related crops revealed some similarities among individual volatiles present in the different crops, which would be responsible of the common aroma notes. However, water celery displayed a unique profile, which was in addition quantitatively richer than others. Thus, this differentiation may promote the use of water celery as a new crop.C. Guijarro-Real thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support with a predoctoral FPU grant (FPU14-06798). Authors also thank Manuel Figueroa for his unvaluable ethnobotanical knowledge and advice, as well as his support in the survey of water celery in the Horta Nord shireGuijarro-Real, C.; Rodríguez Burruezo, A.; Prohens Tomás, J.; Raigón Jiménez, MD.; Fita, A. (2019). HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Research International. 121:765-775. https://doi.org/10.1016/j.foodres.2018.12.05476577512
- …