691 research outputs found

    Gluteal compartment syndrome following elective unilateral internal iliac artery embolization before endovascular abdominal aortic aneurysm repair

    Get PDF
    AbstractDuring endovascular abdominal aortic aneurysm repair, aneurysmal involvement of the common or internal iliac arteries occasionally necessitates elective occlusion of one or both internal iliac arteries. Although elective internal iliac artery occlusion is often well tolerated, it can result in complications such as buttock claudication or rest pain, impotence, and colon ischemia. We report a case of gluteal compartment syndrome following elective unilateral internal iliac artery embolization prior to endovascular abdominal aortic aneurysm repair. On the first postoperative day, the patient developed sciatic nerve palsy, rhabdomyolysis, and renal failure, which promptly resolved after emergent operative exploration of his left buttock and debridement of all grossly necrotic muscle. This case emphasizes the point that, although elective internal iliac artery interruption is usually benign, it can have serious and unexpected complications that necessitate expeditious treatment for complete recovery

    Association Between Advanced Age and Vascular Disease in Different Arterial Territories A Population Database of Over 3.6 Million Subjects

    Get PDF
    ObjectivesThis study sought to determine the relationship between vascular disease in different arterial territories and advanced age.BackgroundVascular disease in the peripheral circulation is associated with significant morbidity and mortality. There is little data to assess the prevalence of different phenotypes of vascular disease in the very elderly.MethodsOver 3.6 million self-referred participants from 2003 to 2008 who completed a medical and lifestyle questionnaire in the United States were evaluated by screening ankle brachial indices <0.9 for peripheral artery disease (PAD), and ultrasound imaging for carotid artery stenosis (CAS) >50% and abdominal aortic aneurysm (AAA) >3 cm. Participants were stratified by decade of life. Multivariate logistic regression analysis was used to estimate odds of disease in different age categories.ResultsOverall, the prevalence of PAD, CAS, and AAA, was 3.7%, 3.9%, and 0.9%, respectively. Prevalence of any vascular disease increased with age (40 to 50 years: 2%, 51 to 60 years: 3.5%, 61 to 70 years: 7.1%, 71 to 80 years: 13.0%, 81 to 90 years: 22.3%, 91 to 100 years: 32.5%; p < 0.0001). Prevalence of disease in each vascular territory increased with age. After adjustment for sex, race/ethnicity, body mass index, family history of cardiovascular disease, smoking, diabetes, hypertension, hypercholesterolemia, and exercise, the odds of PAD (odds ratio [OR]: 2.14; 95% confidence interval [CI]: 2.12 to 2.15), CAS (OR: 1.80; 95% CI: 1.79 to 1.81), and AAA (OR: 2.33; 95% CI: 2.30 to 2.36) increased with every decade of life.ConclusionsThere is a dramatic increase in the prevalence of PAD, CAS, and AAA with advanced age. More than 20% and 30% of octogenarians and nonagenarians, respectively, have vascular disease in at least 1 arterial territory

    Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function.

    Get PDF
    The beta-adrenergic receptor kinase 1 (beta ARK1) is a member of the G protein-coupled receptor kinase (GRK) family that mediates the agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. We have cloned and disrupted the beta ARK1 gene in mice by homologous recombination. No homozygote beta ARK1-/- embryos survive beyond gestational day 15.5. Prior to gestational day 15.5, beta ARK1-/- embryos display pronounced hypoplasia of the ventricular myocardium essentially identical to the "thin myocardium syndrome" observed upon gene inactivation of several transcription factors (RXR alpha, N-myc, TEF-1, WT-1). Lethality in beta ARK1-/- embryos is likely due to heart failure as they exhibit a > 70% decrease in cardiac ejection fraction determined by direct in utero intravital microscopy. These results along with the virtual absence of endogenous GRK activity in beta ARK1-/- embryos demonstrate that beta ARK1 appears to be the predominant GRK in early embryogenesis and that it plays a fundamental role in cardiac development

    Tnni3k Modifies Disease Progression in Murine Models of Cardiomyopathy

    Get PDF
    The Calsequestrin (Csq) transgenic mouse model of cardiomyopathy exhibits wide variation in phenotypic progression dependent on genetic background. Seven heart failure modifier (Hrtfm) loci modify disease progression and outcome. Here we report Tnni3k (cardiac Troponin I-interacting kinase) as the gene underlying Hrtfm2. Strains with the more susceptible phenotype exhibit high transcript levels while less susceptible strains show dramatically reduced transcript levels. This decrease is caused by an intronic SNP in low-transcript strains that activates a cryptic splice site leading to a frameshifted transcript, followed by nonsense-mediated decay of message and an absence of detectable protein. A transgenic animal overexpressing human TNNI3K alone exhibits no cardiac phenotype. However, TNNI3K/Csq double transgenics display severely impaired systolic function and reduced survival, indicating that TNNI3K expression modifies disease progression. TNNI3K expression also accelerates disease progression in a pressure-overload model of heart failure. These combined data demonstrate that Tnni3k plays a critical role in the modulation of different forms of heart disease, and this protein may provide a novel target for therapeutic intervention

    Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial.

    Get PDF
    BACKGROUND: The Vaxxas high-density microarray patch (HD-MAP) consists of a high density of microprojections coated with vaccine for delivery into the skin. Microarray patches (MAPs) offer the possibility of improved vaccine thermostability as well as the potential to be safer, more acceptable, easier to use, and more cost-effective for the administration of vaccines than injection by needle and syringe (N&S). Here, we report a phase I trial using the Vaxxas HD-MAP to deliver a monovalent influenza vaccine that was to the best of our knowledge the first clinical trial to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. METHODS AND FINDINGS: HD-MAPs were coated with a monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/2015 H1N1 haemagglutinin (HA). Between February 2018 and March 2018, 60 healthy adults (age 18-35 years) in Melbourne, Australia were enrolled into part A of the study and vaccinated with either: HD-MAPs delivering 15 μg of A/Singapore/GP1908/2015 H1N1 HA antigen (A-Sing) to the volar forearm (FA); uncoated HD-MAPs; intramuscular (IM) injection of commercially available quadrivalent influenza vaccine (QIV) containing A/Singapore/GP1908/2015 H1N1 HA (15 μg/dose); or IM injection of H1N1 HA antigen (15 μg/dose). After 22 days' follow-up and assessment of the safety data, a further 150 healthy adults were enrolled and randomly assigned to 1 of 9 treatment groups. Participants (20 per group) were vaccinated with HD-MAPs delivering doses of 15, 10, 5, 2.5, or 0 μg of HA to the FA or 15 μg HA to the upper arm (UA), or IM injection of QIV. The primary objectives of the study were safety and tolerability. Secondary objectives were to assess the immunogenicity of the influenza vaccine delivered by HD-MAP. Primary and secondary objectives were assessed for up to 60 days post-vaccination. Clinical staff and participants were blind as to which HD-MAP treatment was administered and to administration of IM-QIV-15 or IM-A/Sing-15. All laboratory investigators were blind to treatment and participant allocation. Two further groups in part B (5 participants per group), not included in the main safety and immunological analysis, received HD-MAPs delivering 15 μg HA or uncoated HD-MAPs applied to the forearm. Biopsies were taken on days 1 and 4 for analysis of the cellular composition from the HD-MAP application sites. The vaccine coated onto HD-MAPs was antigenically stable when stored at 40°C for at least 12 months. HD-MAP vaccination was safe and well tolerated; any systemic or local adverse events (AEs) were mild or moderate. Observed systemic AEs were mostly headache or myalgia, and local AEs were application-site reactions, usually erythema. HD-MAP administration of 2.5 μg HA induced haemagglutination inhibition (HAI) and microneutralisation (MN) titres that were not significantly different to those induced by 15 μg HA injected IM (IM-QIV-15). HD-MAP delivery resulted in enhanced humoral responses compared with IM injection with higher HAI geometric mean titres (GMTs) at day 8 in the MAP-UA-15 (GMT 242.5, 95% CI 133.2-441.5), MAP-FA-15 (GMT 218.6, 95% CI 111.9-427.0), and MAP-FA-10 (GMT 437.1, 95% CI 254.3-751.3) groups compared with IM-QIV-15 (GMT 82.8, 95% CI 42.4-161.8), p = 0.02, p = 0.04, p < 0.001 for MAP-UA-15, MAP-FA-15, and MAP-FA-10, respectively. Higher titres were also observed at day 22 in the MAP-FA-10 (GMT 485.0, 95% CI 301.5-780.2, p = 0.001) and MAP-UA-15 (367.6, 95% CI 197.9-682.7, p = 0.02) groups compared with the IM-QIV-15 group (GMT 139.3, 95% CI 79.3-244.5). Results from a panel of exploratory immunoassays (antibody-dependent cellular cytotoxicity, CD4+ T-cell cytokine production, memory B cell (MBC) activation, and recognition of non-vaccine strains) indicated that, overall, Vaxxas HD-MAP delivery induced immune responses that were similar to, or higher than, those induced by IM injection of QIV. The small group sizes and use of a monovalent influenza vaccine were limitations of the study. CONCLUSIONS: Influenza vaccine coated onto the HD-MAP was stable stored at temperatures up to 40°C. Vaccination using the HD-MAP was safe and well tolerated and resulted in immune responses that were similar to or significantly enhanced compared with IM injection. Using the HD-MAP, a 2.5 μg dose (1/6 of the standard dose) induced HAI and MN titres similar to those induced by 15 μg HA injected IM. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR.org.au), trial ID 108 ACTRN12618000112268/U1111-1207-3550

    Ex Vivo

    Get PDF
    The measurement of vaccine-induced humoral and CD4+ and CD8+ cellular immune responses represents an important correlate of vaccine efficacy. Accurate and reliable assays evaluating such responses are therefore critical during the clinical development phase of vaccines. T cells play a pivotal role both in coordinating the adaptive and innate immune responses and as effectors. During the assessment of cell-mediated immunity (CMI) in subjects participating in a large-scale influenza vaccine trial, we identified the expansion of an IFN-γ-producing CD3+CD4-CD8-γδ+ T cell population in the peripheral blood of 90/610 (15%) healthy subjects. The appearance of CD3+CD4-CD8-γδ+ T cells in the blood of subjects was transient and found to be independent of the study cohort, vaccine group, subject gender and ethnicity, and ex vivo restimulation conditions. Although the function of this population and relevance to vaccination are unclear, their inclusion in the total vaccine-specific T-cell response has the potential to confound data interpretation. It is thus recommended that when evaluating the induction of IFN-γ-producing CD4+ and CD8+ immune responses following vaccination, the CD3+CD4-CD8-γδ+ T cells are either excluded or separately enumerated from the overall frequency determination

    Asfotase alfa therapy for children with hypophosphatasia

    Get PDF
    Background. Hypophosphatasia (HPP) is caused by loss-of-function mutation(s) of the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). Consequently, cell-surface deficiency of TNSALP phosphohydrolase activity leads to extracellular accumulation of inorganic pyrophosphate, a natural substrate of TNSALP and inhibitor of mineralization. Children with HPP can manifest rickets, skeletal pain, deformity, fracture, muscle weakness, and premature deciduous tooth loss. Asfotase alfa is a recombinant, bone-targeted, human TNSALP injected s.c. to treat HPP. In 2012, we detailed the 1-year efficacy of asfotase alfa therapy for the life-threatening perinatal and infantile forms of HPP. Methods. Here, we evaluated the efficacy and safety of asfotase alfa treatment administered to children 6–12 years of age at baseline who were substantially impaired by HPP. Two radiographic scales quantitated HPP skeletal disease, including comparisons to serial radiographs from similarly affected historical control patients. Results. Twelve children receiving treatment were studied for 5 years. The 6-month primary endpoint was met, showing significant radiographic improvement. Additional significant improvements included patient growth, strength, motor function, agility, and quality of life, which for most patients meant achieving normal values for age- and sex-matched peers that were sustained at 5 years of treatment. For most, pain and disability resolved. Mild to moderate injection-site reactions were common and were sometimes associated with lipohypertrophy. Low anti–asfotase alfa antibody titers were noted in all patients. No evidence emerged for clinically important ectopic calcification or treatment resistance. Conclusions. Asfotase alfa enzyme replacement therapy has substantial and sustained efficacy with a good safety profile for children suffering from HPP. Trial Registration. ClinicalTrials.gov NCT00952484 (https://clinicaltrials.gov/ct2/show/NCT00952484) and NCT01203826 (https://clinicaltrials.gov/ct2/show/NCT01203826). Funding. Alexion Pharmaceuticals Inc. and Shriners Hospitals for Children

    Expression QTL Modules as Functional Components Underlying Higher-Order Phenotypes

    Get PDF
    Systems genetics studies often involve the mapping of numerous regulatory relations between genetic loci and expression traits. These regulatory relations form a bipartite network consisting of genetic loci and expression phenotypes. Modular network organizations may arise from the pleiotropic and polygenic regulation of gene expression. Here we analyzed the expression QTL (eQTL) networks derived from expression genetic data of yeast and mouse liver and found 65 and 98 modules respectively. Computer simulation result showed that such modules rarely occurred in randomized networks with the same number of nodes and edges and same degree distribution. We also found significant within-module functional coherence. The analysis of genetic overlaps and the evidences from biomedical literature have linked some eQTL modules to physiological phenotypes. Functional coherence within the eQTL modules and genetic overlaps between the modules and physiological phenotypes suggests that eQTL modules may act as functional units underlying the higher-order phenotypes

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure

    Microarray patch delivery of un-adjuvanted influenza vaccine induces potent and broad-spectrum immune responses in a phase I clinical trial

    Get PDF
    Microarray patches (MAPs) offer the possibility of improved vaccine thermostability and dose-sparing potential as well as the potential to be safer, more acceptable, easier to use and more cost-effective for the administration of vaccines than injection by needle and syringe. Here, we report a phase I trial (ACTRN12618000112268/ U1111-1207-3550) using the Vaxxas high-density MAP (HD-MAP) to deliver a monovalent influenza vaccine to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. To the best of our knowledge, this is the first study determining dose reduction potential using MAPs in humans. Monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/ 2015 [H1N1] haemagglutinin (HA) was delivered by MAP into the volar forearm or upper arm, or given intramuscularly (IM) once. Participants (20 per group) received HD-MAPs delivering doses of 15, 10, 5, 2.5 or 0 µg of HA or an IM injection of quadrivalent influenza vaccine (QIV). In two subgroups, skin biopsies were taken on days 1 (pre-vaccination) and 4 for analysis of the cellular composition from the HD-MAP application sites. All laboratory investigators were blind to treatment and participant allocation. The primary objectives of the study were safety and tolerability. Secondary objectives included immunogenicity and dose de-escalation assessments of the influenza vaccine delivered by HD-MAP. Both objectives were assessed for up to 60 days post-vaccination. Please click Download on the upper right corner to see the full abstract
    • …
    corecore