166 research outputs found

    On the Throughput Region of Wireless Random Access Protocols with Multi-Packet Reception using Multi-Objective Optimization

    Get PDF
    This article belongs to the Special Issue Selected Papers from the Seventh International Conference on Innovative Computing Technology (INTECH 2017).This paper presents a new approach for the analysis and characterization of the throughput region of wireless random access protocols enabled with multi-packet reception (MPR) capabilities. The derivation of a closed-form expression for the envelope of the throughput region under the assumption of an arbitrary number of terminals is an open issue in the literature. To partially fill this gap, a new method based on multi-objective optimization tools is herein presented. This innovative perspective allows us to identify the envelope of the throughput region as the Pareto frontier solution that results from maximizing simultaneously all individual terminal throughput functions. To simplify this problem, a modified MPR model is proposed that mimics the conditions of collision model protocols, but it also inserts new physical (PHY) layer features that allow concurrent transmission or MPR. The N-reception model is herein introduced, where collisions of up to N signals are assumed to be always correctly resolved from a population of J terminals, where N can be related to the number of antennas or degrees of freedom of the PHY-layer used at the receiver to resolve a collision. It is shown that by using this model and under the assumption of N=J−1 , the Pareto frontier expression can be obtained as a simple extension of the ALOHA solution. Unfortunately, for cases with N<J−1 , the structure of the resulting determinant matrix does not allow for a simple explicit solution. To overcome this issue, a symmetrical system is proposed, and the solution is obtained by the analysis of the roots of the resulting polynomial expression. Based on this result, an equivalent sub-optimal solution for the asymmetrical case is herein identified for systems where N<J−1 . An extension to more general reception models based on conditional reception probabilities is also presented using the proposed equivalence between the symmetric and asymmetric solutions. The results intend to shed light on the performance of MPR systems in general, and in particular to advance towards the solution of the conjecture of the equivalence between throughput and stability regions in random access.info:eu-repo/semantics/publishedVersio

    A Random Access Protocol incorporating Multi-Packet Reception, Retransmission Diversity and Successive Interference Cancellation

    Get PDF
    8th International Workshop on Multiple Access Communications (MACOM2015), Helsinki, Finland.This paper presents a random access protocol assisted by a set of signal processing tools that significantly improve the multi-packet reception (MPR) capabilities of the system. A receiver with M antennas is used to resolve collisions with multiplicity K _ M. The remaining unresolved conflicts (with multiplicity K > M) are processed by means of protocol-induced retransmissions that create an adaptive multiple-input multiple-output (MIMO) system. This scheme, also known as NDMA (network diversity multiple access) with MPR, can achieve in ideal conditions a maximum throughput of M packets/time-slot. A further improvement is proposed here, where the receiver attempts to recover the information immediately after the reception of each (re)transmission. This is different from conventional NDMA, where this decoding process only occurs once the adaptive MIMO channel is assumed to become full-rank (i.e., once the estimated number of required retransmissions has been collected). The signals that are correctly decoded at every step of the proposed algorithm are used to mitigate interference upon the remaining contending signals by means of successive interference cancellation (SIC). This allows for improved reception as well as for the reduction of the number of retransmissions required to resolve a collision. Significantly high throughput figures that surpass the nominal rate of the system (T > M) are here reported. To the best of our knowledge this is the first random access protocol that achieves this figure. Correlation between antennas and between retransmissions, as well as imperfections of SIC are also considered. In ideal conditions, the effects of SIC are equivalent to a splitting tree operation. The inclusion of SIC in NDMA-MPR also opens the possibility of backwards compatibility with legacy terminals. The protocol achieves the highest throughput in the literature of single-hop wireless random access with minimum feedback complexity. This is a significant result for future highly dense 5G networks

    A Space-Time Correlation Model for MRC Receivers in Rayleigh Fading Channels

    Get PDF
    This paper presents a statistical model for maximum ratio combining (MRC) receivers in Rayleigh fading channels enabled with a temporal combining process. This means that the receiver effectively combines spatial and temporal branch components. Therefore, the signals that will be processed by the MRC receiver are collected not only across different antennas (space), \mbox{but also} at different instants of time. This suggests the use of a retransmission, repetition or space-time coding algorithm that forces the receiver to store signals in memory at different instants of time. Eventually, these stored signals are combined after a predefined or dynamically optimized number of time-slots or retransmissions. The model includes temporal correlation features in addition to the space correlation between the signals of the different components or branches of the MRC receiver. The derivation uses a frequency domain approach (using the characteristic function of the random variables) to obtain closed-form expressions of the statistics of the post-processing signal-to-noise ratio (SNR) under the assumption of equivalent correlation in time and equivalent correlation in space. The described methodology paves the way for the reformulation of other statistical functions as a frequency-domain polynomial root analysis problem. This is opposed to the infinite series approach that is used in the conventional methodology using directly the probability density function (PDF). The results suggest that temporal diversity is a good complement to receivers with limited spatial diversity capabilities. It is also shown that this additional operation could be maximized when the temporal diversity is adaptive (i.e., activated by thresholds of SNR), thus leading to a better resource utilization.info:eu-repo/semantics/publishedVersio

    Distributed Linear Precoding and User Selection in Coordinated Multicell Systems

    Full text link
    In this manuscript we tackle the problem of semi-distributed user selection with distributed linear precoding for sum rate maximization in multiuser multicell systems. A set of adjacent base stations (BS) form a cluster in order to perform coordinated transmission to cell-edge users, and coordination is carried out through a central processing unit (CU). However, the message exchange between BSs and the CU is limited to scheduling control signaling and no user data or channel state information (CSI) exchange is allowed. In the considered multicell coordinated approach, each BS has its own set of cell-edge users and transmits only to one intended user while interference to non-intended users at other BSs is suppressed by signal steering (precoding). We use two distributed linear precoding schemes, Distributed Zero Forcing (DZF) and Distributed Virtual Signal-to-Interference-plus-Noise Ratio (DVSINR). Considering multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the user selection problem. First we investigate how the signal-to-noise-ratio (SNR) regime and the number of antennas at the BSs affect the effective channel gain (the magnitude of the channels after precoding) and its relationship with multiuser diversity. Considering that user selection must be based on the type of implemented precoding, we develop metrics of compatibility (estimations of the effective channel gains) that can be computed from local CSI at each BS and reported to the CU for scheduling decisions. Based on such metrics, we design user selection algorithms that can find a set of users that potentially maximizes the sum rate. Numerical results show the effectiveness of the proposed metrics and algorithms for different configurations of users and antennas at the base stations.Comment: 12 pages, 6 figure

    Performance Model for MRC Receivers with Adaptive Modulation and Coding in Rayleigh Fading Correlated Channels with Imperfect CSIT

    Get PDF
    RTUWO Advances in Wireless and Optical Communications 2015 (RTUWO 2015). 5-6 Nov Riga, Latvia.This paper presents a performance model of the packet reception process in a wireless link with one antenna transmitter and a multiple-antenna maximum-ratio combining (MRC) receiver. The objective is to address the performance evaluation of multiple antenna systems enabled with adaptive modulation and coding (AMC). Two main assumptions are used: 1) Rayleigh fading correlated channels, and 2) imperfect (outdated) channel state information at the transmitter side (CSIT). The results presented here suggest that spatial correlation not always affects the performance of the MRC receiver: at low signal-to-noise ratio (SNR), correlation can improve performance rather than degrading it. By contrast, at high SNR, correlation is found to always degrade performance. At high SNR, correlation tends to worse the degrading effects of imperfect CSIT, particularly when the number of antennas increases. Imperfect CSIT causes errors in the assignment of MCSs, thus reducing throughput performance. These errors become more evident at high SNR, particularly when the values of branch correlation and the number of antennas increase

    Trade-Off Performance Regions of Slotted ALOHA Protocol using Multi-Objective Optimization

    Get PDF
    10th Conference on Telecommunications (Conftele 2015), Aveiro, Portugal.This paper revisits the study of the Slotted ALOHA protocol with J = 2 terminals. Unlike previous approaches, this work employs multi-objective optimization tools. The work is focused on the characterization of the boundary (envelope) or Pareto optimal front curve of different types of trade-off region: the conventional throughput region, sum-throughput vs. fairness, and sum-throughput vs. transmit power. When possible, parametric and non-parametric expressions of these envelopes are here provided. Fairness is evaluated by means of the Gini-index, which is a metric used in economics to measure income inequality. Transmit power is directly linked to the global transmission rate. The approach presented in this paper generalizes previous works and provides more insights into the operation of random access protocols

    Throughput, stability and fairness of carrier-sense multiple access with cooperative diversity

    Get PDF
    Cooperative diversity has been identified as a potential candidate for boosting the physical (PHY) layer performance of future wireless networks. However, several issues remain open today in the design of an appropriate medium access control (MAC) layer for this type of system. This paper attempts to partially fill this gap by addressing the MAC-PHY cross-layer design of a class of carrier-sense multiple access protocols where collision-free transmissions are assisted by the potential cooperative retransmission of the remaining silent terminals in the network. Unlike previous works, the analysis is focused on full asymmetrical settings, where terminals experience different channel and queuing statistics. To achieve this goal, a packet reception model is here proposed for cooperative schemes where the relaying phase is activated only when the reception of previous (re)transmissions has failed. Closed-form expressions of correct reception probability are derived for Rayleigh fading channels assuming that correct reception occurs only when the instantaneous signal-to-noise ratio (SNR) exceeds a reception threshold. This reception model allows for a MAC-layer design aware of PHY-layer information, and vice versa, PHY-layer enhancement and activation using MAC-layer information. The boundary of the throughput region (i.e., the set of all achievable throughput values) is derived in a parametric closed-form expression using a multi-objective optimization approach. A method for deriving a non-parametric form was further proposed, which allows for a geometric interpretation of the two-user case. Stability features such as backlog user distribution and backlog delay are evaluated by using a novel Markov model for asymmetrical systems. Fairness is evaluated by means of the Gini index, which is a metric commonly used in the field of economics to measure income inequality. The protocol is shown to outperform its non-cooperative counterparts under diverse network conditions that are here discussed

    220605

    Get PDF
    This work presents a capacity analysis of Space-Time Block Codes (STBC) for Vehicle-to-Vehicle (V2V) communication in Line-of-Sight (LOS). The aim is to assess how this type of coding performs when the V2V LOS channel is influenced by ground reflections. STBCs of various coding rates are evaluated using antenna elements distributed over the surface of two contiguous vehicles. A multi-ray tracing tool is used to model the multiple constructive/destructive interference patterns of the transmitted/received signals by all pairs of Tx-Rx antenna links. Simulation results show that STBCs are capable of counteracting fades produced by the destructive self-interference components across a range of inter-vehicle distances. Notably, the effectiveness in deep fades is shown to outperform schemes with exclusive receive diversity. Higher-order STBCs with rate losses are also evaluated, showing interesting gains even for low coding rate performance, particularly, when accompanied by a multiple antenna receiver. Overall, these results can shed light on how to exploit transmit diversity in slow fading vehicular channels.info:eu-repo/semantics/publishedVersio

    Joint Beamforming, Terminal Scheduling, and Adaptive Modulation with Imperfect CSIT in Rayleigh Fading Correlated Channels with Co-channel Interference

    Get PDF
    The Second International Conference on Advances in Signal, Image and Video Processing - from Sensing to Applications (SIGNAL 2017). 21 to 25, May, 2017, 5Gsignalwave. Barcelona, Spain.—This paper presents a resource allocation algorithm for multi-user wireless networks affected by co-channel interference. The analysis considers a network with one base station (BS) that uses a multiple antenna transmitter (beamformer) to schedule (in a time-division manner) transmissions towards a set of J one-antenna terminals in the presence of K persistent interferers. The transmitter is assumed to employ MaximumRatio Combining (MRC) beamforming with spatially-correlated branches and channel envelopes modelled as Rayleigh-distributed processes. The BS has access to an imperfect (outdated) copy of the instantaneous Channel State Information (CSI) of each terminal. Based on this CSI at the transmitter side (CSIT), the BS proceeds to select (at each time interval or time-slot) the terminal with the highest channel strength for purposes of transmission. This imperfect CSIT is also used to calculate the coefficients of the beamformer that will be used to transmit information towards the scheduled terminal, as well as for selecting the most appropriate modulation format (threshold-based decision). In addition, the transmission towards each scheduled terminal is assumed to experience persistent co-channel interference that will degrade the quality of the information reception process. The main merits of this work are the following: 1) joint analysis of MRC-based beamforming, terminal scheduling based on maximum channel strength, and modulation assignment, and 2) joint modelling of the effects of spatial correlation, co-channel interference and imperfect CSIT. Results suggest that scheduling helps in rejecting co-channel interference and the degrading effects of imperfect CSIT. Spatial correlation could some times lead to better performance than the uncorrelated case, particularly in the low SNR (Signal-to-Noise Ratio) regime. Conversely, uncorrelated branches always outperform the correlated case in the high SNR regime. The use of higher numbers of antennas also improve performance of the system. However, spatial correlation tends to accumulate over the antenna array thus leading to a more noticeable performance degradation and more allocation errors due to the outdated CSIT assumption.info:eu-repo/semantics/publishedVersio
    • …
    corecore