1,281 research outputs found

    Liquid Oxygen/Liquid Methane Component Technology Development at MSFC

    Get PDF
    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. Besides existing in-house risk reduction activities, NASA has solicited from industry their participation on component technologies based on the potential application to the lunar ascent main engine (AME). Contracted and NASA efforts have ranged from valve technologies to engine system testbeds. The application for the AME is anticipated to be an expendable, pressure-fed engine for ascent from the moon at completion of its lunar stay. Additionally, the hardware is expected to provide an abort capability prior to landing, in the event that descent systems malfunction. For the past 4 years, MSFC has been working with the Glenn Research Center and the Johnson Space Center on methane technology development. This paper will focus on efforts specific to MSFC in pursuing ignition, injector performance, chamber material assessments and cryogenic valve technologies. Ignition studies have examined characteristics for torch, spark and microwave systems. Injector testing has yielded insight into combustion performance for shear, swirl and impinging type injectors. The majority of chamber testing has been conducted with ablative and radiatively cooled chambers with planned activities for regenerative and transpiration cooled chambers. Lastly, an effort is underway to examine the long duration exposure issues of cryogenic valve internal components. The paper will summarize the status of these efforts

    Green Applications for Space Power Project

    Get PDF
    Spacecraft propulsion and power for many decades has relied on Hydrazine monopropellant technology for auxiliary power units (APU), orbital circularization, orbit raising/lowering and attitude control. However, Hydrazine is toxic and therefore requires special ground handling procedures to ensure launch crew safety. The Swedish Company ECAPS has developed a technology based upon the propellant Ammonium Dinitramide (ADN) that offers higher performance, higher density and reduced ground handling support than Hydrazine. This blended propellant is called LMP-103S. Currently, the United States Air Force (USAF) is pursuing a technology based on Hydroxyl Ammonium Nitrate (HAN, otherwise known as AF-M315E) with industry partners Aerojet and Moog. Based on the advantages offered by these propellants, MSFC should explore powering APU's with these propellants. Due to the availability of space hardware, the principal investigator has found a collection of USAF hardware, that will act as a surrogate, which operates on a Hydrazine derivative. The F-16 fighter jet uses H-70 or 30% diluted Hydrazine for an Emergency Power Unit (EPU) which supplies power to the plane. The PI has acquired two EPU's from planes slated for destruction at the Davis Monthan AFB. This CIF will include a partnership with 2 other NASA Centers who are individually seeking seed funds from their respective organizations: Kennedy Space Center (KSC) and Dryden Flight Research Center (DFRC). KSC is preparing for future flights from their launch pads that will utilize green propellants and desire a low-cost testbed in which to test and calibrate new leak detection sensors. DFRC has access to F-16's which can be used by MSFC & KSC to perform a ground test that demonstrates emergency power supplied to the jet. Neither of the green propellant alternatives have been considered nor evaluated for an APU application. Work has already been accomplished to characterize and obtain the properties of these 2 propellants. However, the spacecraft are using existing leak detection sensors that are typically used for Hydrazine. Using these green propellants for the APU application requires decrementing their TRL down to 3. This task would aim to establish a TRL of 4 at conclusion by showing a proof of concept with a KSC-instrumented EPU asset at the MSFC Component Development Area (CDA). The task to accomplish this is called Green Application for Space Power or GRASP

    Green Application for Space Power

    Get PDF
    Most space vehicle auxiliary power units (APUs) use hydrazine propellant for generating power. Hydrazine is a toxic, hazardous fuel that requires special safety equipment and processes for handling and loading. In recent years, there has been development of two green propellants (less toxic) that could enable their use in APUs. The Swedish government, in concert with the Swedish Space Corporation, has developed a propellant based on ammonium dinitramide (LMP-103S) that was flown on the Prisma spacecraft in 2010. The United States Air Force (USAF) has been developing a propellant based on hydroxylammonium nitrate (AFM315E) that is scheduled to fly on the Green Propellant Infusion Mission in the spring of 2016 to demonstrate apogee and reaction control thrusters. However, no one else in the Agency is currently pursuing use of green propellants for application to the APUs. Per the TA-01 Launch Propulsion Roadmap, the Space Technology Mission Directorate had identified the need to have a green propellant APU by 2015. This is our motivation for continuing activities

    Green Propulsion Auxiliary Power Unit Demonstration at MSFC

    Get PDF
    In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01)1 for Launch Propulsion Systems is one of fourteen TAs that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within TA-01 was the need for a green propulsion auxiliary power unit (APU) for hydraulic power by 2015. Engineers led by the author at the Marshall Space Flight Center (MSFC) have been evaluating green propellant alternatives and have begun the development of an APU test bed to demonstrate the feasibility of use. NASA has residual APU assets remaining from the retired Space Shuttle Program. Likewise, the F-16 Falcon fighter jet also uses an Emergency Power Unit (EPU) that has similar characteristics to the NASA hardware. Both EPU and APU components have been acquired for testing at MSFC. This paper will summarize the status of the testing efforts of green propellant from the Air Force Research Laboratory (AFRL) propellant AFM315E based on hydroxyl ammonium nitrate (HAN) with these test assets

    Green Mono Propulsion Activities at MSFC

    Get PDF
    In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems and TA-02 In-Space Propulsion are two of the fourteen TA's that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within these documents are future needs of green propellant use. Green ionic liquid monopropellants and propulsion systems are beginning to be demonstrated in space flight environments. Starting in 2010 with the flight of PRISMA, a one Newton thruster system began on-orbit demonstrations operating on ammonium dinitramide based propellant. The NASA Green Propellant Infusion Mission (GPIM) plans to demonstrate both 1 N, and 22 N hydroxyl ammonium nitrate based thrusters in a 2015 flight demonstration. In addition, engineers at MSFC have been evaluating green propellant alternatives for both thrusters and auxiliary power units. This paper summarizes the status of these development/demonstration activities and investigates the potential for evolution of green propellants from small spacecraft and satellites to larger spacecraft systems, human exploration, and launch system auxiliary propulsion applications

    Trinity Restoration Inc.: Southside Cultural Center Economic Impact Study

    Get PDF
    Economic development has shifted from location-oriented business models towards a more all-encompassing model that recognizes the advancement of human capital or intellectual property as continuously increasing in value. This microcosmic characteristic of development extends to aid in the growth of society as a whole. The Arts and Culture attract a demographic of inspired and motivated people to the area. It results in the development of the society surrounding art venues. The general population will always seek out entertainment, by installing a venue of artistic expression in South Providence that will motivate the community and propel development. This phenomena has been proven, as denoted through the historical evaluation of artistic venues across America that have generated economic growth in their respective communities

    Crossroads Rhode Island: Proposed Social Enterprise Business Plan

    Get PDF
    Crossroads Rhode Island provides their clients with a continuum of care that includes basic emergency needs, shelter, housing, case management and vocational services for individuals and families. In order to provide these services they rely on the generosity of their donors and supporters who have helped Crossroads to become the largest homeless services organization in Rhode Island. It is important to Crossroads that they stick to their core values of safety, respect, and effectiveness when helping the homeless or at-risk individuals and families secure stable homes

    Visiting Nurse Services of Newport and Bristol County: Increasing Program Awareness for the Help at Home Program

    Get PDF
    We came up with the idea of using a cost analysis to clearly demonstrate the advantage of home care vs. hospitalization. John Hopkins Bay view Medical Center conducted a study within their geriatrics unit to test their Hospital At Home program against typical on-site care at the hospital. The study was held over the course of 30 days involving hundreds of patients across three cities and the results were staggering. Not only was at home care 32% cheaper (5,081versus5,081 versus 7,480) but also overall customer satisfaction was significantly higher

    Spectroscopy in Liquid‐Rare‐Gas Solvents. Infrared Spectra of CH_4 in Argon and of HCl in Xenon

    Get PDF
    A low‐temperature cell employing barium fluoride windows and indium metal gaskets has been built and is being used for the study of rotational, vibrational, and electronic motions of molecules in liquid rare gases. The ν_3 fundamental of CH_4 in liquid argon shows a single, relatively sharp Q branch. The P and R branches are probably present but apparently are lost in the wings of the Q branch. The infrared spectrum near 3.5 μ of HCl in liquid xenon shows well‐resolved P, Q, and R branches, but the individual rotational lines are not resolved. The O branch is not resolved from the tail of the P branch, but there is some indication of the S branch on the high‐frequency side of the spectrum. The Q branch is shifted 36 cm^(-1) to the low‐frequency side of its gas‐phase position. The appearance of O, Q, and S branches is expected because of the presence of an induced dipole moment through the polarizability of the solvent. The agreement between the observed spectrum and that anticipated on the basis of nearly free rotation gives good evidence for the existence of quantized rotational motions of HCl in liquid xenon

    Liquid Oxygen/Liquid Methane Ascent Main Engine Technology Development

    Get PDF
    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LO2)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon the Exploration Systems Architecture Study (ESAS). The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. The current application considering this technology is the lunar ascent main engine (AME). AME is anticipated to be an expendable, pressure-fed engine to provide ascent from the moon at the completion of a 210 day lunar stay. The engine is expected to produce 5,500 lbf (24,465 N) thrust with variable inlet temperatures due to the cryogenic nature of the fuel and oxidizer. The primary technology risks include establishing reliable and robust ignition in vacuum conditions, maximizing specific impulse, developing rapid start capability for the descent abort, providing the capability for two starts and producing a total engine bum time over 500 seconds. This paper will highlight the efforts of the Marshall Space Flight Center (MSFC) in addressing risk reduction activities for this technology
    corecore