27,266 research outputs found

    Editors' Note / Note de la rédaction

    Get PDF
    It was with more than a little trepidation that I deposited my doctoral thesis at the University of Ottawa this past September. These feelings were, of course, accompanied by a great deal of satisfaction and relief at having (nearly) completed a project that I have been working on for years now, and for which I remain passionate. My trepidation stems from the usual feelings of anxiety that come with submitting a thesis: I pray to Clio for a speedy administrative process and for a timely and successful defence. I hope the readers are satisfied with the work, but I also look forward to discussing it in detail with five different people who have actually read it! /J’avais envoyĂ© cet hiver les Ă©tudiants de mon cours de mĂ©thode historique Ă  BibliothĂšque et archives Canada. J’étais alors enthousiasmĂ© par le succĂšs de l’activitĂ© : les Ă©tudiants s’étaient lancĂ©s Ă  la recherche de documents couvrant une pĂ©riode historique et un thĂšme spĂ©cifique choisi en classe. La phase de recherche et de consultation des documents archivistiques avait ravi les Ă©tudiants, qui Ă©taient fascinĂ©s par le processus de recherche documentaire et la facilitĂ© relative avec laquelle ils avaient eu accĂšs aux documents

    Radio-Echo Sounding Over Polar Ice Masses

    Get PDF
    Peer reviewedPublisher PD

    Geometry of logarithmic strain measures in solid mechanics

    Full text link
    We consider the two logarithmic strain measuresωiso=∄devnlog⁥U∄=∄devnlog⁥FTF∄ and ωvol=∣tr(log⁥U)∣=∣tr(log⁥FTF)∣ ,\omega_{\rm iso}=\|\mathrm{dev}_n\log U\|=\|\mathrm{dev}_n\log \sqrt{F^TF}\|\quad\text{ and }\quad \omega_{\rm vol}=|\mathrm{tr}(\log U)|=|\mathrm{tr}(\log\sqrt{F^TF})|\,,which are isotropic invariants of the Hencky strain tensor log⁥U\log U, and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group GL(n)\mathrm{GL}(n). Here, FF is the deformation gradient, U=FTFU=\sqrt{F^TF} is the right Biot-stretch tensor, log⁥\log denotes the principal matrix logarithm, ∄.∄\|.\| is the Frobenius matrix norm, tr\mathrm{tr} is the trace operator and devnX\mathrm{dev}_n X is the nn-dimensional deviator of X∈Rn×nX\in\mathbb{R}^{n\times n}. This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor Δ=sym∇u\varepsilon=\mathrm{sym}\nabla u, which is the symmetric part of the displacement gradient ∇u\nabla u, and reveals a close geometric relation between the classical quadratic isotropic energy potential Ό ∄devnsym∇u∄2+Îș2 [tr(sym∇u)]2=Ό ∄devnΔ∄2+Îș2 [tr(Δ)]2\mu\,\|\mathrm{dev}_n\mathrm{sym}\nabla u\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\mathrm{sym}\nabla u)]^2=\mu\,\|\mathrm{dev}_n\varepsilon\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\varepsilon)]^2in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energyΌ ∄devnlog⁥U∄2+Îș2 [tr(log⁥U)]2=Ό ωiso2+Îș2 ωvol2 ,\mu\,\|\mathrm{dev}_n\log U\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\log U)]^2=\mu\,\omega_{\rm iso}^2+\frac\kappa2\,\omega_{\rm vol}^2\,,where ÎŒ\mu is the shear modulus and Îș\kappa denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor RR, where F=R UF=R\,U is the polar decomposition of FF. We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity

    The Productivity Slowdown, Measurement Issues, and the Explosion of Computer Power

    Get PDF
    macroeconomics, Productivity Slowdown, Measurement Issues, Computer Power

    An ellipticity domain for the distortional Hencky-logarithmic strain energy

    Full text link
    We describe ellipticity domains for the isochoric elastic energy F↊∄devnlog⁥U∄2=∄log⁥FTF(det⁥F)1/n∄2=14 ∄log⁥C(detC)1/n∄2 F\mapsto \|{\rm dev}_n\log U\|^2=\bigg\|\log \frac{\sqrt{F^TF}}{(\det F)^{1/n}}\bigg\|^2 =\frac{1}{4}\,\bigg\|\log \frac{C}{({\rm det} C)^{1/n}}\bigg\|^2 for n=2,3n=2,3, where C=FTFC=F^TF for F∈GL+(n)F\in {\rm GL}^+(n). Here, devnlog⁥U=log⁥U−1n tr(log⁥U)⋅1 ⁣ ⁣1{\rm dev}_n\log {U} =\log {U}-\frac{1}{n}\, {\rm tr}(\log {U})\cdot 1\!\!1 is the deviatoric part of the logarithmic strain tensor log⁥U\log U. For n=2n=2 we identify the maximal ellipticity domain, while for n=3n=3 we show that the energy is Legendre-Hadamard elliptic in the set E3(WHiso,LH,U,23) := {U∈PSym(3)â€…â€ŠâˆŁâ€‰âˆ„dev3log⁥U∄2≀23}\mathcal{E}_3\bigg(W_{_{\rm H}}^{\rm iso}, {\rm LH}, U, \frac{2}{3}\bigg)\,:=\,\bigg\{U\in{\rm PSym}(3) \;\Big|\, \|{\rm dev}_3\log U\|^2\leq \frac{2}{3}\bigg\}, which is similar to the von-Mises-Huber-Hencky maximum distortion strain energy criterion. Our results complement the characterization of ellipticity domains for the quadratic Hencky energy WH(F)=Ό ∄dev3log⁥U∄2+Îș2 [tr(log⁥U)]2 W_{_{\rm H}}(F)=\mu \,\|{\rm dev}_3\log U\|^2+ \frac{\kappa}{2}\,[{\rm tr} (\log U)]^2 , U=FTFU=\sqrt{F^TF} with ÎŒ>0\mu>0 and Îș>23 Ό\kappa>\frac{2}{3}\, \mu, previously obtained by Bruhns et al
    • 

    corecore