117 research outputs found

    Running-In of Systems Protected by Additive-Rich Oils

    Get PDF
    Recent research on mild wearing systems running under boundary lubrication conditions focus more and more on the role of the nano-crystalline layer present at the surface of the components in contact. This layer has a typical thickness of a few tenths of nano-meters up to a few microns depending on the operational conditions. The role of this layer with respect to wear is, however, still unclear as well as its mechanical behavior. In this study, a first step is made in incorporating this type of layer into a wear model. Using an elasto-plastic semi-analytical-method the effect of different material behaviors reported through out current literature for the nano-crystalline layer on wear is studied. From the results it can be concluded that the effect of this mechanically altered layer has an important influence on the wear of the system, especially during the initial phase of running

    Mild wear prediction of boundary lubricated contacts

    Get PDF
    In this paper, a wear model is introduced for the mild wear present in boundary-lubricated systems protected by additive-rich lubricants. The model is based on the hypothesis that the mild wear is mainly originating from the removal of the sacrificial layer formed by a chemical reaction between the base material and the additive packages present in the lubricant. By removing a part of this layer, the chemical balance of the system is disturbed and the system will try to restore the balance for which it uses base material. In this study, mechanical properties reported throughout literature are included into the wear model based on observed phenomena for this type of systems. The model is validated by model experiments and the results are in very good agreement, suggesting that the model is able to simulate wear having a predictive nature rather than on empirical-based relationships as Archard’s linear wear model. Also a proposal is made to include the transition from mild to severe wear into the model creating a complete wear map

    Training in data definitions improves quality of intensive care data

    Get PDF
    BACKGROUND: Our aim was to assess the contribution of training in data definitions and data extraction guidelines to improving quality of data for use in intensive care scoring systems such as the Acute Physiology and Chronic Health Evaluation (APACHE) II and Simplified Acute Physiology Score (SAPS) II in the Dutch National Intensive Care Evaluation (NICE) registry. METHODS: Before and after attending a central training programme, a training group of 31 intensive care physicians from Dutch hospitals who were newly participating in the NICE registry extracted data from three sample patient records. The 5-hour training programme provided participants with guidelines for data extraction and strict data definitions. A control group of 10 intensive care physicians, who were trained according the to train-the-trainer principle at least 6 months before the study, extracted the data twice, without specific training in between. RESULTS: In the training group the mean percentage of accurate data increased significantly after training for all NICE variables (+7%, 95% confidence interval 5%–10%), for APACHE II variables (+6%, 95% confidence interval 4%–9%) and for SAPS II variables (+4%, 95% confidence interval 1%–6%). The percentage data error due to nonadherence to data definitions decreased by 3.5% after training. Deviations from 'gold standard' SAPS II scores and predicted mortalities decreased significantly after training. Data accuracy in the control group did not change between the two data extractions and was equal to post-training data accuracy in the training group. CONCLUSION: Training in data definitions and data extraction guidelines is an effective way to improve quality of intensive care scoring data

    Eradication of Resistant and Susceptible Aerobic Gram-Negative Bacteria From the Digestive Tract in Critically Ill Patients; an Observational Cohort Study

    Get PDF
    BACKGROUND: Selective Decontamination of the Digestive tract (SDD) aims to prevent nosocomial infections, by eradication of potentially pathogenic micro-organisms from the digestive tract. OBJECTIVES: To estimate the rate of and the time to eradication of resistant vs. susceptible facultative aerobic gram-negative bacteria (AGNB) in patients treated with SDD. METHODS: This observational and retrospective study included patients admitted to the ICU between January 2001 and August 2017. Patients were included when treated with SDD (tobramycin, polymyxin B, and amphotericin B) and colonized in the upper or lower gastro-intestinal (GI) tract with at least one AGNB present on admission. Decontamination was determined after the first negative set of cultures (rectal and throat). An additional analysis was performed of two consecutive negative cultures. RESULTS: Of the 281 susceptible AGNB in the throat and 1,087 in the rectum on admission, 97.9 and 93.7%, respectively, of these microorganisms were successfully eradicated. In the upper GI-tract no differences in eradication rates were found between susceptible and resistant microorganisms. However, the median duration until eradication was significantly longer for aminoglycosides resistant vs. susceptible microorganisms (5 vs. 4 days, p < 0.01). In the lower GI-tract, differences in eradication rates between susceptible and resistant microorganisms were found for cephalosporins (90.0 vs. 95.6%), aminoglycosides (84.4 vs. 95.5%) and ciprofloxacin (90.0 vs. 95.2%). Differences in median duration until eradication between susceptible and resistant microorganisms were found for aminoglycosides and ciprofloxacin (both 5 days vs. 6 days, p = 0.001). Decontamination defined as two negative cultures was achieved in a lower rate (77–98% for the upper GI tract and 64–77% for the lower GI tract) and a median of 1 day later. CONCLUSION: The vast majority of both susceptible and resistant microorganisms are effectively eradicated from the upper and lower GI tract. In the lower GI tract decontamination rates of susceptible microorganisms are significantly higher and achieved in a shorter time period compared to resistant strains

    Off hour admission to an intensivist-led ICU is not associated with increased mortality

    Get PDF
    Introduction: Caring for the critically ill is a 24-hour-a-day responsibility, but not all resources and staff are available during off hours. We evaluated whether intensive care unit (ICU) admission during off hours affects hospital mortality. Methods: This retrospective multicentre cohort study was carried out in three non-academic teaching hospitals in the Netherlands. All consecutive patients admitted to the three ICUs between 2004 and 2007 were included in the study, except for patients who did not fulfil APACHE II criteria (readmissions, burns, cardiac surgery, younger than 16 years, length of stay less than 8 hours). Data were collected prospectively in the ICU databases. Hospital mortality was the primary endpoint of the study. Off hours was defined as the interval between 10 pm and 8 am during weekdays and between 6 pm and 9 am during weekends. Intensivists, with no responsibilities outside the ICU, were present in the ICU during daytime and available for either consultation or assistance on site during off hours. Residents were available 24 hours a day 7 days a week in two and fellows in one of the ICUs. Results: A total of 6725 patients were included in the study, 4553 (67.7%) admitted during daytime and 2172 (32.3%) admitted during off hours. Baseline characteristics of patients admitted during daytime were significantly different from those of patients admitted during off hours. Hospital mortality was 767 (16.8%) in patients admitted during daytime and 469 (21.6%) in patients admitted during off hours (P < 0.001, unadjusted odds ratio 1.36, 95%CI 1.20-1.55). Standardized mortality ratios were similar for patients admitted during off hours and patients admitted during daytime. In a logistic regression model APACHE II expected mortality, age and admission type were all significant confounders but off-hours admission was not significantly associated with a higher mortality (P = 0.121, adjusted odds ratio 1.125, 95%CI 0.969-1.306). Conclusions: The increased mortality after ICU admission during off hours is explained by a higher illness severity in patients admitted during off hours

    Insulin treatment guided by subcutaneous continuous glucose monitoring compared to frequent point-of-care measurement in critically ill patients: a randomized controlled trial

    Get PDF
    Glucose measurement in intensive care medicine is performed intermittently with the risk of undetected hypoglycemia. The workload for the ICU nursing staff is substantial. Subcutaneous continuous glucose monitoring (CGM) systems are available and may be able to solve some of these issues in critically ill patients. In a randomized controlled design in a mixed ICU in a teaching hospital we compared the use of subcutaneous CGM with frequent point of care (POC) to guide insulin treatment. Adult critically ill patients with an expected stay of more than 24 hours and in need of insulin therapy were included. All patients received subcutaneous CGM. CGM data were blinded in the control group, whereas in the intervention group these data were used to feed a computerized glucose regulation algorithm. The same algorithm was used in the control group fed by intermittent POC glucose measurements. Safety was assessed with the incidence of severe hypoglycemia ( <2.2 mmol/L), efficacy with the percentage time in target range (5.0 to 9.0 mmol/L). In addition, we assessed nursing workload and costs. In this study, 87 patients were randomized to the intervention and 90 to the control group. CGM device failure resulted in 78 and 78 patients for analysis. The incidence of severe glycemia and percentage of time within target range was similar in both groups. A significant reduction in daily nursing workload for glucose control was found in the intervention group (17 versus 36 minutes; P <0.001). Mean daily costs per patient were significantly reduced with EUR 12 (95% CI -32 to -18, P = 0.02) in the intervention group. Subcutaneous CGM to guide insulin treatment in critically ill patients is as safe and effective as intermittent point-of-care measurements and reduces nursing workload and daily costs. A new algorithm designed for frequent measurements may lead to improved performance and should precede clinical implementation. Clinicaltrials.gov, NCT01526044. Registered 1 February 201

    Clinically relevant potential drug-drug interactions in intensive care patients:A large retrospective observational multicenter study

    Get PDF
    Purpose: Potential drug-drug interactions (pDDIs) may harm patients admitted to the Intensive Care Unit (ICU). Due to the patient's critical condition and continuous monitoring on the ICU, not all pDDIs are clinically relevant. Clinical decision support systems (CDSSs) warning for irrelevant pDDIs could result in alert fatigue and overlooking important signals. Therefore, our aim was to describe the frequency of clinically relevant pDDIs (crpDDIs) to enable tailoring of CDSSs to the ICU setting. Materials & methods: In this multicenter retrospective observational study, we used medication administration data to identify pDDIs in ICU admissions from 13 ICUs. Clinical relevance was based on a Delphi study in which intensivists and hospital pharmacists assessed the clinical relevance of pDDIs for the ICU setting. Results: The mean number of pDDIs per 1000 medication administrations was 70.1, dropping to 31.0 when considering only crpDDIs. Of 103,871 ICU patients, 38% was exposed to a crpDDI. The most frequently occurring crpDDIs involve QT-prolonging agents, digoxin, or NSAIDs. Conclusions: Considering clinical relevance of pDDIs in the ICU setting is important, as only half of the detected pDDIs were crpDDIs. Therefore, tailoring CDSSs to the ICU may reduce alert fatigue and improve medication safety in ICU patients

    Hospital mortality is associated with ICU admission time

    Get PDF
    Previous studies have shown that patients admitted to the intensive care unit (ICU) after "office hours" are more likely to die. However these results have been challenged by numerous other studies. We therefore analysed this possible relationship between ICU admission time and in-hospital mortality in The Netherlands. This article relates time of ICU admission to hospital mortality for all patients who were included in the Dutch national ICU registry (National Intensive Care Evaluation, NICE) from 2002 to 2008. We defined office hours as 08:00-22:00 hours during weekdays and 09:00-18:00 hours during weekend days. The weekend was defined as from Saturday 00:00 hours until Sunday 24:00 hours. We corrected hospital mortality for illness severity at admission using Acute Physiology and Chronic Health Evaluation II (APACHE II) score, reason for admission, admission type, age and gender. A total of 149,894 patients were included in this analysis. The relative risk (RR) for mortality outside office hours was 1.059 (1.031-1.088). Mortality varied with time but was consistently higher than expected during "off hours" and lower during office hours. There was no significant difference in mortality between different weekdays of Monday to Thursday, but mortality increased slightly on Friday (RR 1.046; 1.001-1.092). During the weekend the RR was 1.103 (1.071-1.136) in comparison with the rest of the week. Hospital mortality in The Netherlands appears to be increased outside office hours and during the weekends, even when corrected for illness severity at admission. However, incomplete adjustment for certain confounders might still play an important role. Further research is needed to fully explain this differenc
    corecore