33 research outputs found
The Asteroid Impact and Deflection Assessment Mission and its Potential Contributions to Human Exploration of Asteroids
The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations
Swarm Flyby Gravimetry
This study describes a new technology for discerning the gravity fields and mass distribution of a solar system small body, without requiring dedicated orbiters or landers. Instead of a lander, a spacecraft releases a collection of small, simple probes during a flyby past an asteroid or comet. By tracking those probes from the host spacecraft, one can estimate the asteroid's gravity field and infer its underlying composition and structure. This approach offers a diverse measurement set,equivalent to planning and executing many independent and unique flyby encounters of a single spacecraft. This report assesses a feasible hardware implementation, derives the underlying models,and analyzes the performance of this concept via simulation.In terms of hardware, a small, low mass, low cost implementation is presented, which consists of a dispenser and probes. The dispenser contains roughly 12 probes in a tube and has a total size commensurate with a 6U P-Pod. The probes are housed in disc shaped sabots. When commanded,the dispenser ejects the top-most probe using a linear motor. The ejected probe separates from its sabots and unfolds using internal springs. There are two types of probes, each designed for a particular tracking modality. The reflective probe type, tracked by a telescope, unfolds to forma diffusely reflective sphere. The retroreflector probe type, tracked by a lidar, unfolds to form a corner-cube retroreflector assembly. Both types are designed to spherical so that their attitude doesn't affect the spacecraft's tracking performance.This analysis indicates that the point-mass term of small bodies larger than roughly 500 m in diameter can be observed from a host spacecraft that tracks locally deployed probes throughout a flyby to an uncertainty of better than 5%. The conditions by which this measurement is possible depends on the characteristics of the asteroid (size, type), the flyby velocity, and the type of tracking available (angles-only or angles+ranging). For most encounters, a few (1-3) well placed probes can be very effective, with marginal improvement for additional probes. Given realistic deployment errors, an encounter may require roughly 10-12 probes to ensure that 1-3 achieve their target. Long duration tracking of probes flying by large asteroids (>5 km diameter) can sometimes provide observability of the gravity field's first spherical harmonic, J( sub 2). In summary, this method offers a feasible, affordable approach to enabling or augmenting flyby science
Using Dust from Asteroids as Regolith Microsamples
More robust links need to be forged between meteorites and their parent bodies to understand the composition, diversity and distribution of the asteroids. A major link can be sample analysis of the parent body material and comparison with meteorite data. Dust is present around all airless bodies, generated by micrometeorite impact into their airless surfaces, which in turn lofts regolith particles into a "cloud" around the body. The composition, flux, and size distribution of dust particles can provide insight into the geologic evolution of airless bodies. For example, the Cassini Cosmic Dust Analyzer detected salts and minerals emitted by plumes at Enceladus, evidence for a subsurface ocean with a silicate seafloor. Dust analysis instruments may enable future missions to obtain elemental, isotopic and mineralogical composition of regolith particles without returning the samples to terrestrial laboratories
Red material on the large moons of Uranus: Dust from irregular satellites?
The large and tidally-locked classical moons of Uranus display longitudinal
and planetocentric trends in their surface compositions. Spectrally red
material has been detected primarily on the leading hemispheres of the outer
moons, Titania and Oberon. Furthermore, detected H2O ice bands are stronger on
the leading hemispheres of the classical satellites, and the leading/trailing
asymmetry in H2O ice band strengths decreases with distance from Uranus. We
hypothesize that the observed distribution of red material and trends in H2O
ice band strengths results from infalling dust from Uranian irregular
satellites. These dust particles migrate inward on slowly decaying orbits,
eventually reaching the classical satellite zone, where they collide primarily
with the outer moons. The latitudinal distribution of dust swept up by these
moons should be fairly even across their southern and northern hemispheres.
However, red material has only been detected over the southern hemispheres of
these moons (subsolar latitude 81 S). Consequently, to test whether irregular
satellite dust impacts drive the observed enhancement in reddening, we have
gathered new ground-based data of the now observable northern hemispheres of
these moons (sub-observer latitudes, 17 to 35 N). Our results and analyses
indicate that longitudinal and planetocentric trends in reddening and H2O ice
band strengths are broadly consistent across both southern and northern
latitudes of these moons, thereby supporting our hypothesis. Utilizing a suite
of numerical best fit models, we investigate the composition of the reddening
agent detected on these moons, finding that both complex organics and amorphous
pyroxene match the spectral slopes of our data. We also present spectra that
span 2.9 to 4.1 microns, a previously unexplored wavelength range in terms of
spectroscopy for the Uranian moons.Comment: Icarus [In Press]. 12 figures, 15 table
Astro2020 Science White Paper: Triggered High-Priority Observations of Dynamic Solar System Phenomena
Unexpected dynamic phenomena have surprised solar system observers in the
past and have led to important discoveries about solar system workings.
Observations at the initial stages of these events provide crucial information
on the physical processes at work. We advocate for long-term/permanent programs
on ground-based and space-based telescopes of all sizes - including Extremely
Large Telescopes (ELTs) - to conduct observations of high-priority dynamic
phenomena, based on a predefined set of triggering conditions. These programs
will ensure that the best initial dataset of the triggering event are taken;
separate additional observing programs will be required to study the temporal
evolution of these phenomena. While not a comprehensive list, the following are
notional examples of phenomena that are rare, that cannot be anticipated, and
that provide high-impact advances to our understandings of planetary processes.
Examples include: new cryovolcanic eruptions or plumes on ocean worlds; impacts
on Jupiter, Saturn, Uranus, or Neptune; extreme eruptions on Io; convective
superstorms on Saturn, Uranus, or Neptune; collisions within the asteroid belt
or other small-body populations; discovery of an interstellar object passing
through our solar system (e.g. 'Oumuamua); and responses of planetary
atmospheres to major solar flares or coronal mass ejections.Comment: Astro2020 white pape
Solar System Exploration Research Virtual Institute: Year Three Annual Report 2016
NASA's Solar System Exploration Research Virtual Institute (SSERVI) is pleased to present the 2016 Annual Report. Each year brings new scientific discoveries, technological breakthroughs, and collaborations. The integration of basic research and development, industry and academic partnerships, plus the leveraging of existing technologies, has further opened a scientific window into human exploration. SSERVI sponsorship by the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD) continues to enable the exchange of insights between the human exploration and space science communities, paving a clearer path for future space exploration. SSERVI provides a unique environment for scientists and engineers to interact within multidisciplinary research teams. As a virtual institute, the best teaming arrangements can be made irrespective of the geographical location of individuals or laboratory facilities. The interdisciplinary science that ensues from virtual and in-person interactions, both within the teams and across team lines, provides answers to questions that many times cannot be foreseen. Much of this research would not be accomplished except for the catalyzing, collaborative environment enabled by SSERVI. The SSERVI Central Office, located at NASA Ames Research Center in Silicon Valley, California, provides the leadership, guidance and technical support that steers the virtual institute. At the start of 2016, our institute had nine U.S. teams, each mid-way through their five-year funding cycle, plus nine international partnerships. However, by the end of the year we were well into the selection of four new domestic teams, selected through NASA's Cooperative Agreement Notice (CAN) process, and a new international partnership. Understanding that human and robotic exploration is most successful as an international endeavor, international partnerships collaborate with SSERVI domestic teams on a no-exchange of funds basis, but they bring a richness to the institute that is priceless. The international partner teams interact with the domestic teams in a number of ways, including sharing students, scientific insights, and access to facilities. We are proud to introduce our newest partnership with the Astrophysics and Planetology Research Institute (IRAP) in Toulouse, France. In 2016, Principal Investigator Dr. Patrick Pinet assembled a group of French researchers who will contribute scientific and technological expertise related to SSERVI research. SSERVI's domestic teams compete for five-year funding opportunities through proposals to a NASA CAN every few years. Having overlapping proposal selection cycles allows SSERVI to be more responsive to any change in direction NASA might experience, while providing operational continuity for the institute. Allowing new teams to blend with the more seasoned teams preserves corporate memory and expands the realm of collaborative possibilities. A key component of SSERVI's mission is to grow and maintain an integrated research community focused on questions related to the Moon, Near-Earth asteroids, and the moons of Mars. The strong community response to CAN-2 demonstrated the health of that effort. NASA Headquarters conducted the peer-review of 22 proposals early in 2017 and, based on recommendations from the SSERVI Central Office and NASA SSERVI program officers, the NASA selecting officials determined the new teams in the spring of 2017. We are pleased to welcome the CAN-2 teams into the institute, and look forward to the collaborations that will develop with the current teams. The new teams are: The Network for Exploration and Space Science (NESS) team (Principal Investigator (PI) Prof. Jack Burns/U. Colorado); the Exploration Science Pathfinder Research for Enhancing Solar System Observations (ESPRESSO) team (PI Dr. Alex Parker/Southwest Research Institute); the Toolbox for Research and Exploration (TREX) team (PI Dr. Amanda Hendrix/ Planetary Science Institute); and the Radiation Effects on Volatiles and Exploration of Asteroids & Lunar Surfaces (REVEALS) team (PI Prof. Thomas Orlando/ Georgia Institute of Technology). In this report, you will find an overview of the 2016 leadership activities of the SSERVI Central Office, reports prepared by the U.S. teams from CAN-1, and achievements from several of the SSERVI international partners. Reflecting on the past year's discoveries and advancements serves as a potent reminder that there is still a great deal to learn about NASA's target destinations. Innovation in the way we access, sample, measure, visualize, and assess our target destinations is needed for further discovery. At the same time, let us celebrate how far we have come, and strongly encourage a new generation that will make the most of future opportunities
ASIME 2018 White Paper. In-Space Utilisation of Asteroids: Asteroid Composition -- Answers to Questions from the Asteroid Miners
In keeping with the Luxembourg government's initiative to support the future
use of space resources, ASIME 2018 was held in Belval, Luxembourg on April
16-17, 2018.
The goal of ASIME 2018: Asteroid Intersections with Mine Engineering, was to
focus on asteroid composition for advancing the asteroid in-space resource
utilisation domain. What do we know about asteroid composition from
remote-sensing observations? What are the potential caveats in the
interpretation of Earth-based spectral observations? What are the next steps to
improve our knowledge on asteroid composition by means of ground-based and
space-based observations and asteroid rendez-vous and sample return missions?
How can asteroid mining companies use this knowledge?
ASIME 2018 was a two-day workshop of almost 70 scientists and engineers in
the context of the engineering needs of space missions with in-space asteroid
utilisation. The 21 Questions from the asteroid mining companies were sorted
into the four asteroid science themes: 1) Potential Targets, 2)
Asteroid-Meteorite Links, 3) In-Situ Measurements and 4) Laboratory
Measurements. The Answers to those Questions were provided by the scientists
with their conference presentations and collected by A. Graps or edited
directly into an open-access collaborative Google document or inserted by A.
Graps using additional reference materials. During the ASIME 2018, first day
and second day Wrap-Ups, the answers to the questions were discussed further.
New readers to the asteroid mining topic may find the Conversation boxes and
the Mission Design discussions especially interesting.Comment: Outcome from the ASIME 2018: Asteroid Intersections with Mine
Engineering, Luxembourg. April 16-17, 2018. 65 Pages. arXiv admin note:
substantial text overlap with arXiv:1612.0070
In-Space Utilisation of Asteroids::“Answers to Questions from the Asteroid Miners”
The aim of the Asteroid Science Intersections with In-Space Mine Engineering (ASIME) 2016 conference on September 21-‐22, 2016 in Luxembourg City wasto provide an environment for the detailed discussion of the specific properties of asteroids, with the engineering needs of space missions that utilize asteroids.The ASIME 2016 Conference produced a layered record of discussions from theasteroid scientists and the asteroid miners to understand each other’s key concerns and to address key scientific questions from the asteroid mining companies: Planetary Resources, Deep Space Industries and TransAstra. These Questions were the focus of the two day conference, were addressed byscientists inside and outside of the ASIME Conference and are the focus ofthis White Paper.The Questions from the asteroid mining companies have been sorted into the three asteroid science themes: 1) survey, 2) surface and 3) subsurface and 4)Other. The answers to those Questions have been provided by the scientists with their conference presentations or edited directly into an early open-‐access collaborative Google document (August 2016-‐October 2016), or inserted byA. Graps using additional reference materials. During the ASIME 2016 last two-‐hours, the scientists turned the Questions from the Asteroid Miners around by presenting their own key concerns: Questions from the Asteroid Scientists. These answers in this White Paper will point to the Science Knowledge Gaps (SKGs) for advancing the asteroid in-‐space resource utilisation domain