29 research outputs found

    Trans-abdominal in vivo placental vessel occlusion using High Intensity Focused Ultrasound.

    Get PDF
    Pre-clinically, High Intensity Focused Ultrasound (HIFU) has been shown to safely and effectively occlude placental blood vessels in the acute setting, when applied through the uterus. However, further development of the technique to overcome the technical challenges of targeting and occluding blood vessels through intact skin remains essential to translation into human studies. So too does the assessment of fetal wellbeing following this procedure, and demonstration of the persistence of vascular occlusion. At 115 ± 10 d gestational age (term~147 days) 12 pregnant sheep were exposed to HIFU (n = 6), or to a sham (n = 6) therapy through intact abdominal skin (1.66 MHz, 5 s duration, in situ ISPTA 1.3-4.4 kW.cm-2). Treatment success was defined as undetectable colour Doppler signal in the target placental vessel following HIFU exposures. Pregnancies were monitored for 21 days using diagnostic ultrasound from one day before HIFU exposure until term, when post-mortem examination was performed. Placental vessels were examined histologically for evidence of persistent vascular occlusion. HIFU occluded 31/34 (91%) of placental vessels targeted, with persistent vascular occlusion evident on histological examination 20 days after treatment. The mean diameter of occluded vessels was 1.4 mm (range 0.3-3.3 mm). All pregnancies survived until post mortem without evidence of significant maternal or fetal iatrogenic harm, preterm labour, maternal or fetal haemorrhage or infection. Three of six ewes exposed to HIFU experienced abdominal skin burns, which healed without intervention within 21 days. Mean fetal weight, fetal growth velocity and other measures of fetal biometry were not affected by exposure to HIFU. Fetal Doppler studies indicated a transient increase in the umbilical artery pulsatility index (PI) and a decrease in middle cerebral artery PI as a result of general anaesthesia, which was not different between sham and treatment groups. We report the first successful application of fully non-invasive HIFU for occlusion of placental blood flow in a pregnant sheep model, with a low risk of significant complications. This proof of concept study demonstrates the potential of this technique for clinical translation

    Noninvasive high-intensity focused ultrasound treatment of twin-twin transfusion syndrome: A preliminary in vivo study.

    Get PDF
    We investigated the efficacy, maternofetal responses, and safety of using high-intensity focused ultrasound (HIFU) for noninvasive occlusion of placental vasculature compared to sham treatment in anesthetized pregnant sheep. This technique for noninvasive occlusion of placental vasculature may be translatable to the treatment of conditions arising from abnormal placental vasculature, such as twin-twin transfusion syndrome (TTTS). Eleven pregnant sheep were instrumented with maternal and fetal arterial catheters and time-transit flow probes to monitor cardiovascular, acid-base, and metabolic status, and then exposed to HIFU (n = 5) or sham (n = 6) ablation of placental vasculature through the exposed uterine surface. Placental vascular flow was occluded in 28 of 30 targets, and histological examination confirmed occlusion in 24 of 30 targets. In both HIFU and sham exposures, uterine contact reduced maternal uterine artery flow, but delivery of oxygen and glucose to the fetal brain remained normal. HIFU can consistently occlude in vivo placental vessels and ablate blood flow in a pregnant sheep model. Cardiovascular and metabolic fetal responses suggest that the technique is safe in the short term and potentially translatable to human pregnancy

    Maternal and fetal cardiometabolic recovery following ultrasound-guided high-intensity focused ultrasound placental vascular occlusion.

    Get PDF
    High-intensity focused ultrasound (HIFU) is a non-invasive method of selective placental vascular occlusion, providing a potential therapy for conditions such as twin-twin transfusion syndrome. In order to translate this technique into human studies, evidence of prolonged fetal recovery and maintenance of a healthy fetal physiology following exposure to HIFU is essential. At 116 ± 2 days gestation, 12 pregnant ewes were assigned to control ( n = 6) or HIFU vascular occlusion ( n = 6) groups and anaesthetized. Placental blood vessels were identified using colour Doppler ultrasound; HIFU-mediated vascular occlusion was performed through intact maternal skin (1.66 MHz, 5 s duration, in situ ISPTA 1.8-3.9 kW cm-2). Unidentifiable colour Doppler signals in targeted vessels following HIFU exposure denoted successful occlusion. Ewes and fetuses were then surgically instrumented with vascular catheters and transonic flow probes and recovered from anaesthesia. A custom-made wireless data acquisition system, which records continuous maternal and fetal cardiovascular data, and daily blood sampling were used to assess wellbeing for 20 days, followed by post-mortem examination. Based on a comparison of pre- and post-treatment colour Doppler imaging, 100% (36/36) of placental vessels were occluded following HIFU, and occlusion persisted for 20 days. All fetuses survived. No differences in maternal or fetal blood pressure, heart rate, heart rate variability, metabolic status or oxygenation were observed between treatment groups. There was evidence of normal fetal maturation and no evidence of chronic fetal stress. There were no maternal injuries and no placental vascular haemorrhage. There was both a uterine and fetal burn, which did not result in any obstetric or fetal complications. This study demonstrates normal long-term recovery of fetal sheep from exposure to HIFU-mediated placental vascular occlusion and underlines the potential of HIFU as a potential non-invasive therapy in human pregnancy

    A study of bubble activity generated in ex-vivo tissue by high intensity focused ultrasound (HIFU)

    No full text
    Cancer treatment by extracorporeal high-intensity focused ultrasound (HIFU) is constrained by the time required to ablate clinically relevant tumour volumes. Although cavitation may be used to optimize HIFU treatments, its role during lesion formation is ambiguous. Clear differentiation is required between acoustic cavitation (noninertial and inertial) effects and bubble formation arising from two thermally-driven effects (the vapourization of liquid into vapour, and the exsolution of formerly dissolved permanent gas out of the liquid and into gas spaces). This study uses clinically relevant HIFU exposures in degassed water and ex vivo bovine liver to test a suite of cavitation detection techniques that exploit passive and active acoustics, audible emissions and the electrical drive power fluctuations. Exposure regimes for different cavitation activities (none, acoustic cavitation and, for ex vivo tissue only, acoustic cavitation plus thermally-driven gas space formation) were identified both in degassed water and in ex vivo liver using the detectable characteristic acoustic emissions. The detection system proved effective in both degassed water and tissue, but requires optimization for future clinical application

    An experimental system for the study of ultrasound exposure of isolated blood vessels

    No full text
    An experimental system designed for the study of the effects of diagnostic or therapeutic ultrasound exposure on isolated blood vessels in the presence or absence of intraluminal contrast agent is described. The system comprised several components. A microscope was used to monitor vessel size (and thus vessel functionality), and potential leakage of intraluminal 70 kDa FITC-dextran fluorescence marker. A vessel chamber allowed the mounting of an isolated vessel whilst maintaining its viability, with pressure regulation for the control of intraluminal pressure and induction of flow for the infusion of contrast microbubbles. A fibre-optic hydrophone sensor mounted on the vessel chamber using a micromanipulator allowed pre-exposure targeting of the vessel to within 150 µm, and monitoring of acoustic cavitation emissions during exposures. Acoustic cavitation was also detected using changes in the ultrasound drive voltage and by detection of audible emissions using a submerged microphone. The suitability of this system for studying effects in the isolated vessel model has been demonstrated using a pilot study of 6 sham exposed and 18 high intensity focused ultrasound exposed vessels, with or without intraluminal contrast agent (SonoVue) within the vessel

    Holographic Focused Ultrasound Hyperthermia System for Uniform Simultaneous Thermal Exposure of Multiple Tumor Spheroids

    No full text
    Hyperthermia is currently used to treat cancer due to its ability to radio- and chemo-sensitize and to stimulate the immune response. While ultrasound is non-ionizing and can induce hyperthermia deep within the body non-invasively, achieving uniform and volumetric hyperthermia is challenging. This work presents a novel focused ultrasound hyperthermia system based on 3D-printed acoustic holograms combined with a high-intensity focused ultrasound (HIFU) transducer to produce a uniform iso-thermal dose in multiple targets. The system is designed with the aim of treating several 3D cell aggregates contained in an International Electrotechnical Commission (IEC) tissue-mimicking phantom with multiple wells, each holding a single tumor spheroid, with real-time temperature and thermal dose monitoring. System performance was validated using acoustic and thermal methods, ultimately yielding thermal doses in three wells that differed by less than 4%. The system was tested in vitro for delivery of thermal doses of 0–120 cumulative equivalent minutes at 43 °C (CEM43) to spheroids of U87-MG glioma cells. The effects of ultrasound-induced heating on the growth of these spheroids were compared with heating using a polymerase chain reaction (PCR) thermocycler. Results showed that exposing U87-MG spheroids to an ultrasound-induced thermal dose of 120 CEM43 shrank them by 15% and decreased their growth and metabolic activity more than seen in those exposed to a thermocycler-induced heating. This low-cost approach of modifying a HIFU transducer to deliver ultrasound hyperthermia opens new avenues for accurately controlling thermal dose delivery to complex therapeutic targets using tailored acoustic holograms. Spheroid data show that thermal and non-thermal mechanisms are implicated in the response of cancer cells to non-ablative ultrasound heating
    corecore