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invasive nature of current treatments limit their value. 
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Abstract:  

We investigated the efficacy, materno-fetal responses, and safety of using high-intensity focused 

ultrasound (HIFU) for non-invasive occlusion of placental vasculature compared to sham 

treatment in anesthetised pregnant sheep.  This technique for non-invasive occlusion of placental 

vasculature may be translatable to the treatment of conditions arising from abnormal placental 

vasculature, such as Twin-Twin Transfusion Syndrome (TTTS). Eleven pregnant sheep were 

instrumented with maternal and fetal arterial catheters and time transit flow probes to monitor 

cardiovascular, acid-base, and metabolic status, then exposed to HIFU (n=5) or sham (n=6) 

ablation of placental vasculature through the exposed uterine surface. Placental vascular flow was 

occluded in 28/30 targets, and histological examination confirmed occlusion in 24/30. In both 

HIFU and sham exposures, uterine contact reduced maternal uterine artery flow, but delivery of 

oxygen and glucose to the fetal brain remained normal. HIFU can consistently occlude in vivo 

placental vessels and ablate blood flow in a pregnant sheep model. Cardiovascular and metabolic 

fetal responses suggest that the technique is safe in the short term and potentially translatable to 

human pregnancy. 



Introduction 

High-intensity focused ultrasound (HIFU) (1) is a clinically approved therapeutic 

technique for non-invasive ablation of uterine fibroids, as well as bony and soft tissue cancers.  

Ultrasound waves generated by a shaped piezoelectric ceramic transducer, positioned outside the 

body, produce localized tissue destruction at depth, using a combination of thermal and/or pressure 

effects (2).  Converging ultrasound waves pass through overlying tissue, causing damage where 

energy is focused, to create a small lesion (typically ellipsoidal, 1-2 mm in diameter and 8-15 mm 

in length). Combined with diagnostic imaging to target the focus, lesions can be placed adjacent 

to each other to destroy larger volumes of tissue. Only one successful use of HIFU in human fetal 

medicine has been reported so far: HIFU soft tissue ablation of the cord insertion in a compromised 

fetus with twin reversed arterial perfusion (TRAP) sequence, which afforded a better prognosis for 

the surviving twin (3). 

Twin-twin transfusion syndrome (TTTS) affects 10-15% (4) of monochorionic diamniotic 

(MCDA) twins, has an untreated mortality >80% (5), and is the leading cause of death and 

disability in twins (6).  It results from abnormal vascular connections (predominantly arterio-

venous anastomoses, or AVAs) in monochorionic placentae, which allow unequal sharing of 

placental blood flow (7). Treatment to divide the twins’ circulations is recommended in severe 

(stage 3-4) TTTS (8), where fetal compromise has already occurred (9).  

Fetoscopic laser occlusion of placental anastomoses to divide the fetal circulations has been 

developed over the last 20 years (10). Although neurological outcomes at 2 years may be improved 

with this technique, meta-analysis has not shown an improvement in survival (11). Complications 

are secondary to the invasive nature of the procedure, because fetoscopy alone is recognized to 

worsen neonatal outcomes (9, 12-14); this limits the use of fetoscopic laser to cases of TTTS where 



fetal compromise has already occurred.  AVAs typically lie deep within the placenta (15), but laser 

ablation is limited to a maximum depth of a few millimeters; residual anastomoses are visualized 

using color Doppler in 15-30% cases (16).  This may result in recurrent disease (17) or a related 

condition, twin anemia-polycythemia sequence (TAPS), which is three times more common after 

laser treatment (13).  A non-invasive method which could divide placental circulations and occlude 

superficial or deep anastomoses could potentially reduce the risks of both procedure-related 

complications and incomplete vascular occlusion, offering a more effective therapy and widening 

the scope of treatment.  The use of HIFU to specifically occlude placental vasculature is a 

previously unreported application of the technology. 

The aim of this study was to test the efficacy, feasibility, and fetal-maternal safety of 

ultrasound-guided HIFU placental vascular occlusion in a pregnant animal model as a precursor 

to human clinical trials.  This study required a model of placental vascular anastomoses: AVAs 

are 0.3-0.6 mm in diameter, and veno-venous anastomoses may be up to 3.5 mm in diameter (18). 

The pregnant sheep cannot provide a true model of TTTS, because vascular anastomoses between 

allantoic circulations in multiple pregnancies in sheep are rare (19), unlike in human 

monochorionic placentation, where they occur in 90% of cases (20). Unlike the discoid human 

placenta, the sheep placenta is organized into discrete regions of maternal and fetal tissue called 

placentomes, regions of enmeshed maternal and fetal villi, where materno-fetal countercurrent 

flow and hemotrophic exchange takes place (21).  Fetal vessels arise from the placentomes and are 

up to 5 mm in diameter. These run between placentomes before joining together to form the 

umbilical cord, providing appropriately sized target vessels.   

In the human placenta, fetal cotyledons are recognized, with discrete villous trees of fetal 

blood flow where concurrent flow and hemotrophic materno-fetal exchange occurs, despite the 



externally continuous nature of the placental surface.  The villous trees of both human and sheep 

placentae are similar in that they contain stem, intermediate, and terminal villi of comparable 

structure and size (22).    Hence, although the human and sheep placentae initially appear very 

different, they are functionally comparable and their vasculature is anatomically similar, and the 

pregnant sheep model has been used previously to demonstrate intrauterine fetoscopic laser 

ablation of placental vasculature (23).  

Unlike other experimental animal models, sheep tend to have singleton or twin 

pregnancies, and the birth weight of a lamb is similar to that of a human baby.  Furthermore, sheep 

and humans have comparable anatomy of the heart and vasculature, and the temporal development 

of the cardiovascular system is similar (24).  The gestational time for the ewe is 145-150 days, 

around 50% of the human gestational period, but longer than many other experimental animals, 

meaning that techniques, timing, and duration of experimentation are more easily translated from 

research to a clinical context.   

 



Results  

Efficacy and safety of HIFU placental vascular occlusion 

Based on comparison of pre- and post-exposure color Doppler imaging, HIFU successfully 

ablated blood flow in 28 of 30 (93.3%) placental vessels (Fig. 1A,B). Of the 28 successful 

ablations, 27 were achieved in a single exposure series; 2 of the 3 remaining placentomes were re-

exposed, resulting in 1 further successful ablation (total 32 exposure series). During exposures, 

hyperechoic regions (Fig. 1C) were seen to develop at the HIFU focus with harmonic imaging.  

The appearance of two or more successive hyperechoes in an exposure series was associated with 

successful ablation of blood flow in 28 of 28 successful HIFU exposure series and 0 of 4 

unsuccessful ones.  This was a more sensitive indicator for monitoring treatment with harmonic 

imaging than placentome structural change, which was only seen in 15 of 28 successful ablations.   

Treatment success was assessed using 3 measures.  The primary measure was new onset 

absence of flow on color Doppler after exposure (“no flow”), because this is the measure available 

clinically to judge success and guide therapy.  The study design allowed secondary confirmation 

to be sought from macroscopic observation and histological examination of damaged tissue in the 

targeted region. As already mentioned, treatment success defined by “no flow” was 93.3%.   

Gross pathological changes after HIFU exposure were observed macroscopically in the 

central region of all 30 targeted placentomes, with either tissue darkening (Fig. 2A) or tissue pallor 

(Fig. 2B), in some cases extending into the peripheries.  This included the 2 in which flow was not 

successfully occluded.  Histological examination of damaged tissue was possible in 26 of 30 

placentomes; in 2 placentomes (<2 cm diameter) there was extensively damaged tissue, rendering 

them too friable to be sectioned for H&E staining.  In the remaining 2 placentomes, no clear view 

of the origin of fetal vessels could be seen in the sections.  Evidence of clot within fetal vessels, 



suggestive of occlusion, was found in 24/26 (92.3%) specimens and was not found in 2/26 (8.7%) 

or in sham treated placentomes (Fig. 2C,D).  The 2 placentomes without evidence of vessel 

occlusion were the same 2 in which color flow Doppler signals were still present on the post-

treatment images.  Outcomes are summarized in table S1. 

A single case of vessel hemorrhage in the 30 placentomes targeted (3.3%) was associated 

with equipment malfunction.  The automated gantry failed to move and delivered 4 exposures to 

the same position in the vessel wall.  We were not able to resolve the hemorrhage non-invasively, 

but all fetuses survived the experimental protocol despite this one incident. No damage to the 

uterus, adjacent maternal structure, or fetus was observed in this study, based on external 

examination at post mortem.  

 

 Maternal cardiovascular, acid-base, and metabolic responses to HIFU exposures 

In both HIFU and sham ablation studies, there was a reduction in uterine artery blood flow 

by up to 30% of basal flow, secondary to increased uterine artery vascular resistance during the 

period of time when the HIFU and sham exposures were being applied; the maternal mean arterial 

blood pressure and heart rate remained unchanged throughout the procedure (Fig. 3).  Given that 

this reduction in blood flow had a similar time of onset and magnitude in both HIFU and sham 

ablations, the only common potentially causative event which occurred in both groups at this point 

in the experiment was the gentle handling and manipulation of the uterus to optimize the acoustic 

window.  B-Mode/Doppler ultrasound was used during both the baseline and treatment phases of 

the experimental protocol and thus is unlikely to be the causative factor.  Values for metabolic and 

acid-base status were not different between treatment groups at baseline and remained 



predominantly unchanged during the experimental procedures involving both sham and HIFU 

exposures (Table 1).   

 

Fetal cardiovascular, acid-base, and metabolic responses to HIFU exposures 

The fetal heart rate and mean arterial blood pressure remained constant throughout the 

experimental procedure (Fig. 4).  Blood flow to the fetal brain was unchanged in terms of absolute 

volume, and oxygen and glucose delivery to the fetal brain both remained within expected 

parameters and were unaltered during the experimental procedure, despite a reduced partial 

pressure of oxygen (PaO2) in the fetal blood by the end of the recovery period. (Fig. 4, Tables 2 

and 3).  By the end of the recovery period, there was a gradual deterioration of fetal acid-base and 

metabolic status, which was not different in HIFU compared to sham groups, and these changes 

occurred at the same time points for both (Table 2).   

There was a reduction in fetal femoral artery blood flow volume and an increase in femoral 

artery vascular resistance, which occurred in conjunction with the reduction in maternal uterine 

artery blood flow (Fig. 3 and 4). There was also an increase in the ratio of blood flow between the 

fetal carotid and femoral arteries (Fig. 4).   

The median duration of anesthesia at the start of the experimental protocol (start of baseline 

recording) was 145 min (range 128-180 min) in the sham group and 138 min (range 125-157 min) 

in the HIFU group. This was not significantly different (p=0.14), and values for  maternal and fetal 

cardiovascular, metabolic, and acid-base status during baseline recordings (Table 1 and 2) were 

not different between exposed and sham groups, demonstrating that this difference in anesthesia 

time was not clinically important. 



Discussion  

This study demonstrates the potential for the use of HIFU as a non-invasive method of 

placental vascular occlusion in pregnant sheep, an animal model that mimics vascular anastomoses 

in the monochorionic human placenta. The primary aims of this study were to assess the efficacy 

and safety of this technique for the mother and fetus.  To this end, the recorded maternal and fetal 

cardiovascular, acid-base, and metabolic responses secondary to ultrasound-guided HIFU 

placental vascular occlusion were encouraging.  

The main impact on maternal physiology was a modest fall in uterine artery blood flow 

during the treatment phase of the experimental protocol in both HIFU and sham exposure series.  

The only experimental feature related temporally to this fall in uterine blood flow was the uterine 

handling needed to alter uterine position to optimize the acoustic window during the treatment 

phase.  This was necessary to optimize the path for the ultrasound beam to follow, given the 

artificial introduction of intra-abdominal air by the preceding laparotomy, to produce vascular 

occlusion in the targeted placentomes.  The effect of direct intraoperative uterine contact and 

handling on fetal wellbeing and physiology has not previously been reported.  An acute, anesthetic-

related reduction in uterine artery blood flow secondary to maternal bradycardia and arterial 

hypotension has been linked to isoflurane usage (25-31), however, this response is time-dependent, 

and all parameters recovered to baseline within 120 minutes of start of anesthesia in these studies 

(25, 26).  The maternal and fetal cardiovascular parameters in our study were within normal ranges 

at the start of the experimental protocol (start of baseline), as would be expected based on this 

previously published work, and isoflurane delivery remained stable throughout the experimental 

protocol.  It is thus unlikely to account for the fall in uterine artery blood flow observed here.  

Maternal heart rate and arterial blood pressure remained stable through the experimental 



procedure, so the primary cause of reduced blood flow in the uterine artery in this setting may be 

increased resistance in the uterine artery secondary to local vasospasm, rather than autoregulation 

associated with system-wide maternal cardiovascular alterations which have been reported under 

anesthesia (32).   

Fetal peripheral vasoconstriction, although classically understood as part of the fetal brain 

sparing response to acute hypoxia (33), can also result from fetal acidosis in the absence of fetal 

hypoxia (34), primarily mediated by the sympathetic nervous response and maintained by 

endocrine-mediated fetal stress responses (35). Peripheral vasoconstriction has been described in 

sheep fetuses as a response to reduced uterine blood flow in the absence of fetal hypoxia (36).  

Isoflurane sedation does not alter the capacity of fetal sheep to redistribute cerebral and systemic 

blood flow in response to reduced utero-placental flow or the development of acidosis (29).  

Accordingly, fetal peripheral vasoconstriction responses of the same magnitude were observed in 

both groups in response to the reduction in uterine artery blood flow.  These fetal changes persisted 

beyond the normalization of uterine artery blood flow in the recovery period.  It is important to 

note that these responses were not worsened by the addition of HIFU placental vascular occlusion, 

and there was no corresponding increase in carotid blood flow during this period to suggest 

cerebral vasodilation (33, 37).  The cerebral vasodilation aspect of the fetal brain sparing response 

to acute hypoxia is under paracrine, rather than systemic, control (33).  Given that the delivery of 

oxygen and glucose to the fetal brain was preserved within normal limits for the duration of all 

experiments, hypoxia-induced cerebral vasodilatation would not be expected.  Therefore, the 

increase in the ratio of the carotid to femoral blood flow in the fetus is secondary to the fall in 

femoral blood flow, most likely as a result of increased sympathetic outflow in response to the 



uterine vasospasm, rather than being representative of cerebral vasodilation and peripheral 

vasoconstriction in response to acute fetal hypoxia (37).  

Although fetal oxygenation remained within normal limits for the duration of the 

procedure, there was a gradual reduction in the fetal PaO2, the saturation of oxyhemoglobin, and 

delivery of oxygen to the brain between the baseline and recovery periods.  These changes were 

not different between HIFU and sham groups and are more likely to represent fetal deterioration 

under anesthetic than an effect of HIFU exposures.  Mechanical ventilation was used to maintain 

the ewes in an isocapnic state despite the need for periods of breath holding; however, a mixed 

respiratory and metabolic fetal acidosis still developed.  Placental transfer of oxygen relies on the 

double Bohr effect, where elimination of carbon dioxide (CO2) from the fetal circulation drives 

maternal oxyhemoglobin disassociation and increases the affinity of fetal hemoglobin for the 

oxygen.  Anything that reduces fetal elimination of CO2, resulting in a fetal respiratory acidosis, 

paradoxically reduces the availability of maternal oxygen at the placental interface.  A progressive 

fetal respiratory acidosis and falling PaO2 has been reported in the anesthetized fetus regardless of 

concomitant operative or experimental procedures (25, 26), and the PaCO2 at the end of our 

recovery period is comparable to other published values for this duration of isoflurane anesthesia.  

We suggest that these changes in fetal pH as a result of anesthesia are what underlie the trend to 

reduced oxygenation seen in our results.   

Carbon dioxide is generated by the fetus at a steady rate and is eliminated from the fetal 

circulation by diffusion across the placenta.(38)  Elevated maternal PaCO2 causes steady state 

equilibration (Fick’s first principle) to reset to a higher baseline, eliminating less CO2 from the 

fetus. (38)  Although there was no increase in maternal PaCO2 observed during the experimental 

protocol, the maternal baseline was above the normal range for non-anesthetized sheep.  



Ventilating sheep in the recumbent position and their increased alveolar dead space compared to 

humans make CO2 elimination from the ovine lungs less effective under anesthesia (39-41), 

resulting in a mild maternal respiratory acidosis.   

The placental exchange rate of CO2 is also affected by the supra-physiological PaO2 in the 

mother and fetus.  The Haldane effect describes the increased capacity of deoxygenated 

hemoglobin to buffer CO2 compared to oxygenated hemoglobin (42), and this has been calculated 

to account for 46% of placental CO2 exchange.(38) The artificially elevated concentrations of 

oxygenated hemoglobin in both mother and fetus reduce the magnitude of the Haldane effect in 

this setting, and so further reduce the fetal elimination of CO2.  CO2 diffusion across the placenta 

is limited by uterine blood flow (39) because it is highly soluble (42), so the additive effect of 

reduced uterine artery blood flow during the period of uterine manipulation accelerates the increase 

in fetal CO2 accumulation.  Decreases in fetal pH in our results were augmented by the fetal 

peripheral vasoconstriction observed: lactate is a product of anaerobic respiration and is produced 

in greater quantities by the under-perfused fetal tissues during peripheral vasoconstriction, 

particularly by the muscle bulk of the hind limbs, and it increased by the recovery period of the 

experiment, contributing to a mixed respiratory and metabolic acidosis (43).   

Collectively, these findings suggest an appropriate fetal defense response, allowing 

compensation for a non-hypoxic challenge, rather than fetal distress resulting from HIFU.  Given 

that HIFU has already been used in human pregnancy for the treatment of TRAP sequence (3), 

these findings already have relevance to clinical obstetrics. It should be noted that the sheep fetuses 

were healthy and that the effects on a fetus compromised by TTTS may be different.  However, 

one aim of developing a non-invasive method to divide fetal circulations is to reduce the risks 



associated with the invasive nature of current therapies and to allow earlier intervention before 

such fetal compromise occurs. 

This study has demonstrated that placental vessels can be identified and targeted for HIFU 

ablation using color Doppler ultrasound in the sheep. Non-invasive color flow Doppler ultrasound 

improves the accuracy of HIFU targeting when compared to surgical exposure or visual 

identification of blood vessels (44).  Targeting accuracy worse than 3 mm (45) can result in failed 

vascular occlusion and injury to adjacent structures such as bowel (46, 47), nerves (48), or other 

blood vessels (49).  Our treatment protocol, which places a linear track of 4-7 exposures across 

each vessel, involves a 6-12 mm linear movement of the automated gantry across the intended 

target and should be tolerant of a small degree of inaccuracy in targeting placental vessels.  

Placental vessels can be readily identified using Doppler ultrasound in sheep, and Doppler 

velocimetry correlates well with absolute flows measured invasively in these vessels (50, 51).  

AVAs in human monochorionic placentae have been successfully identified using color and pulsed 

wave Doppler, with a sensitivity of 25-50% when compared to placental injection studies (52-54).  

In all cases, identification was easier with an anterior placenta, which may be a more accessible 

target for HIFU exposures than a posterior placenta when a fixed focal length HIFU transducer is 

used. 

The treatment protocol used shows that HIFU can consistently (93.3%) ablate in vivo 

placental blood flow in a pregnant sheep model, in vessels with clinically relevant diameters.  

Although the protocol used did not achieve occlusion in every target, it is a strength of our 

technique that treatment success and failure can be assessed in real time by the same modality 

(color Doppler) used to target HIFU, and residual anastomoses may be suitable for immediate 

retreatment.  Residual anastomoses are identified by color Doppler imaging in 15-30% of cases 



after laser therapy (16) and may lead to recurrent disease with a worse overall prognosis (17) or a 

threefold increased incidence of a related condition, TAPS (13).  Residual anastomoses may not 

be identified during laser treatment and would require a further invasive treatment to resolve, 

which is currently not recommended.  Recently, fetoscopic laser has changed from selective 

coagulation of vessels where they cross the “vascular equator” to bipartition of the placenta. In 

this procedure, additional laser ablation of placental tissue is used to join the sites where vessels 

have been coagulated and to create a physical separation between the twins’ circulations.  This 

does improve neonatal survival and decreases rates of recurrence and TAPS, however it is 

associated with an 11.5% double twin loss rate, typically related to the invasive nature of 

fetoscopic laser (55).  Although the anatomy of the sheep placenta lends itself to selective 

coagulation of vessels because the tissue is discontinuous, the HIFU positioning system is capable 

of placement of exposures to form a confluent line of tissue destruction along a predetermined 

track, such as would be required for bipartition of the placenta, making either approach feasible.   

Vascular occlusion typically requires higher levels of HIFU energy than ablation of soft 

tissue (56), and carries with it the potential complications of vessel rupture and hemorrhage, 

attributed to rapid changes in tissue pressure (46, 48, 57) or accumulation of excessive thermal 

energy in the vessel wall (58-60).  This presents the possibility that the energy levels required to 

occlude vessels may also cause vessel wall rupture. In our optimization studies, ultrasound 

exposure intensities higher than used in this study did produce vessel hemorrhage (61) and 

maximum thresholds were determined, resulting in the optimized protocol presented here.  

Because of these safeguards, the single incident of vessel wall rupture observed in this study was 

associated with unintentional non-movement of the gantry, resulting in over-exposure of a single 

region of the vessel wall.  This happened only after 4 repeated exposures in the same location, 



suggesting a large safety margin in the upper dose threshold.  By limiting the size of the target 

volume, and thus the total dose delivered to the tissue, our protocol is able to successfully and 

consistently occlude placental vasculature in this setting, without crossing the threshold at which 

vascular rupture and hemorrhage occurs. Larger vessels are typically protected from rupture by 

their thicker walls and higher flow with greater cooling effect (62); one of the treatment failures 

was an attempt to occlude a larger vessel, and although this was unsuccessful, it was not associated 

with vascular hemorrhage. Concerns have also been expressed about repeat exposure of vessels 

resulting in vascular rupture (58-60).  In this study, only 2 treatments were repeated, limiting our 

ability to discuss the value and safety of retreatment.  The first of these was successful, although 

tissue damage spread into the periphery, reaching the capsule of the placentome.  This might be 

considered to have breached a theoretical “safety margin” designed to protect adjacent structures.  

Despite this limitation, there was no maternal, uterine, or fetal damage or damage to adjacent 

placentomes. The second retreatment attempted to ablate flow in a case of vessel hemorrhage, and 

was not successful in either ablating flow or in resolving the vessel hemorrhage.  This suggests 

that an additional protocol of HIFU treatment different from the one currently used should be 

applied for the case of inadvertent vascular hemorrhage, and this will require future studies before 

attempting human application.  

The energy levels required to occlude placental vasculature (table S2) also present the 

possibility of pre-focal (maternal skin, abdominal fat, uterus) and post-focal (fetus) damage to 

structures in the path of the ultrasound energy.  The potential for such damage is a consequence of 

the focused beam geometry, and shorter focal lengths and higher intensities may increase the risk.  

Although there were no such complications in this study, the range of intensities used was at the 

higher end of those reported to produce vascular occlusion (56), so there is potential to reduce 



these energy levels in future applications.  There is also the possibility of lateral thermal spread 

outside the intended focal zone, as with any energy source that heats tissue, although HIFU 

exposures of soft tissue typically produce sharply demarcated lesions (63).  Again, there were no 

such complications in this study.  There are without doubt important technical considerations with 

regard to appropriate case selection and careful treatment planning of HIFU exposures to minimize 

these risks.  However, these should be balanced against the potential benefits to mother and fetus 

of avoiding fetoscopy. Other potential difficulties still remain to be addressed before a human 

treatment could be implemented.  The protocol, transducer, and control software used in these 

preliminary experiments are not yet optimized for use in human pregnancy, and the need for an 

adequate acoustic window after surgical instrumentation meant that HIFU was applied directly 

through the uterine surface rather than through the maternal skin.  Delivering HIFU energy truly 

non-invasively (through intact skin) to achieve vascular occlusion is an essential challenge still to 

be met and will need to be the subject of future experimental studies.  As previously discussed, 

placental vascular anastomoses can be detected non-invasively by color Doppler, and as 

demonstrated in our results, color Doppler is an appropriate targeting and treatment monitoring 

modality for HIFU exposures.  The work of Okai et al (3) demonstrates that adequate HIFU energy 

can be delivered using a transdermal approach into the intrauterine space to ablate soft tissue at 

the cord insertion in human pregnancy, demonstrating the feasibility of our intended work.      

Another key feature of translating these techniques to human pregnancy will involve 

greater understanding of the mechanisms by which vascular occlusion is produced in this protocol, 

to allow customization of any potential treatment system for human pregnancy.  HIFU can interact 

with blood vessels to produce vascular occlusion by thermal mechanisms (56).  Tissue heating can 

cause shrinkage of vessel walls (64), narrowing of vessel lumen (65), and/or fusion of the walls in 



a closed position (66).  HIFU can also damage the vascular endothelium, producing occlusive 

thrombus that causes permanent obliteration of the vessel through chronic inflammatory processes 

(67, 68).  The methods used to assess treatment success suggest that tissue heating is an important 

feature of achieving successful vascular occlusion in this model.  Hyperechoic regions, as seen at 

the HIFU focus in our targets, are associated with bubble formation caused by tissue water boiling 

(69).  Development of hyperechoic regions during two or more successive exposures appeared to 

be a sensitive and specific marker of successful vascular occlusion, compared to the observation 

of structural change of the placentome, which was not a good indicator of vascular occlusion.  

Evidence of tissue heating was seen macroscopically where tissue pallor (suggestive of tissue 

denaturation) occurred in the central region of treated placentomes.  Histologically, occlusion of 

vessel lumen with clot was observed.  Together, these features suggest that achieving tissue heating 

within the placentome is an important process in achieving vascular occlusion. 

In summary, these initial feasibility studies demonstrate the utility of ultrasound-guided 

HIFU to target and safely occlude placental blood vessels in vivo with a 93% success rate.  This 

raises the prospect of non-invasive HIFU treatment of TTTS and other related conditions resulting 

from abnormal placental vasculature, such as twin reversed arterial perfusion (TRAP) sequence 

and TAPS in human pregnancy. 

 



Materials and Methods 

Study design:  This animal study was designed to assess the efficacy, materno-fetal 

responses and safety of using high intensity focused ultrasound (HIFU) to non-invasively occlude 

placental vasculature, compared to sham treatment.  Eleven anesthetized pregnant sheep were used 

in the study (5 HIFU-treated, 6 sham controls), and there was no randomization or blinding. The 

study was powered to detect a difference in means of ≥ 2.5 at α = 0.05 with a power of 80%, based 

on published data of chronically instrumented sheep fetuses (70).  The primary efficacy endpoint 

was achieving vascular occlusion; the primary safety endpoints were detection of uterine or fetal 

burns or placental hemorrhage.  Maternal and fetal responses were measured using cardiovascular, 

acid-base, and metabolic criteria.  All procedures were performed in accordance with the UK 

Animals (Scientific Procedures) Act 1986 and were approved by the Ethical Review Committee 

of the University of Cambridge. 

Surgical preparation: Eleven pregnant Welsh mountain sheep with singleton fetuses at 

116±2 days gestation (term ~147 days) were used.  Animals were fasted for 24 hours before 

operation.  Anesthesia was induced with alfaxalone 3mg/kg (Alfaxan, Jurox) and maintained with 

isoflurane (1.5-2.5% in 4:1 O2:N2O).  Maternal oxygen saturation and end-tidal carbon dioxide 

(EtCO2) were monitored non-invasively; EtCO2 was maintained at <6%.  For the procedure, the 

ewe was maintained in left lateral tilt.  A midline abdominal incision was made and hysterotomy 

performed for instrumentation of the fetus.  Fetal arterial catheters were introduced into the fetal 

carotid and femoral arteries and advanced into the ascending and descending aorta, respectively 

(37).  A third catheter was placed in the amniotic fluid to provide a reference for “zero pressure”.  

Time-transit flow probes were placed around the contralateral fetal carotid and femoral arteries (2 

mm aperture, R-series, Transonic Systems Inc.) and on a main branch of the maternal uterine artery 



at the level of the cervix (4 mm aperture, S-series, Transonic Systems Inc.).  An arterial catheter 

was advanced into the maternal descending aorta via the femoral artery. The hysterotomy incisions 

were closed but the rectus sheath remained open to allow direct access for the HIFU probe to the 

uterine surface. 

Experimental protocol:  Arterial blood pressures and flows were continuously monitored 

using the customized Cambridge Data Acquisition System (70).   Data were converted into 

absolute values and recorded for offline analysis (sampling rate of 500 kHz, IDEEQ, Maastricht 

Instruments).  Mean values for sequential 1 minute epochs “minute means” were generated for 

cardiovascular data (Labchart 7 Pro, AD Instruments Ltd.).  The experimental protocol was started 

within 30 minutes of completion of surgery, while the animal remained under anesthesia.  It was 

divided into three periods. The first of these was a baseline period of 30 minutes during which the 

uterus was not manipulated and a static water bag containing approximately 3 L of degassed water 

and the diagnostic and therapeutic transducers was in contact with the uterine surface.  Placental 

vasculature was mapped using B Mode and color Doppler ultrasound imaging (P10-4, Z. One 

Zonare or P10-4 Toshiba Powervision 7000). The second period consisted of 30 minutes of HIFU 

exposure/sham exposure of placental vasculature (a total of 6 placentomes were targeted per 

animal in the HIFU group with a single vessel targeted per placentome).  This phase included 

gentle manipulation of the uterus to optimize the acoustic window. The last phase was a 30 minute 

recovery period, after which the animals were euthanized by terminal anesthesia. Blood samples 

were taken from the maternal femoral artery and the fetal femoral and carotid arteries at the start 

of baseline (-30 min), the start, midpoint, and end of HIFU/sham exposures, and at the end of the 

recovery phase (Fig. S1). We measured acid-base status, PaO2, and PaCO2 (ABL5 Blood Gas 



Analyser, Radiometer); hemoglobin, hematocrit, and oxygen saturation of the blood (ABL80 Flex, 

Radiometer); blood glucose and lactate (YSI 2300 Stat Plus, Yellow Springs Instruments).   

 

HIFU Protocol: HIFU was applied directly through the uterine surface, acoustically 

coupled using a degassed water-filled bag suspended from an arm on a positioning gantry. The 

Sonic Concepts H148MR transducer used (frequency 1.66 MHz, 64 mm diameter, 63 mm focal 

length, 19 mm central aperture for ultrasound imaging, focal diameter 1.2 mm, focal length 8.9 

mm) was held in position within the water bag on an automated 3D positioning gantry (Fig. 5A).  

A laptop computer was used to run a graphical user interface (MATLAB R2013a, Mathworks) to 

control and log the automated gantry position, signal generator settings, and timing of exposures. 

A single line of HIFU exposures was made using the motorized gantry across the target vessel in 

the central region of each placentome (Fig. 5B), identified using a P 10-4 Zonare ultrasound probe 

centrally mounted behind the HIFU transducer.  Exposure conditions were: 4-7 exposures of 5 s 

duration, spaced 5 s and 2 mm apart at an estimated in situ ISPTA of 3900 to 5700 W.cm-2 (table S2) 

based on a HIFU protocol we optimized previously and described elsewhere (61). Tissue responses 

such as hyperecho and structural change were recorded (3 s clips) using tissue harmonic imaging 

(8.0 MHz B Mode) during exposures for offline analysis.  Placental vasculature was assessed and 

still images recorded before and immediately after HIFU exposure using color Doppler in the same 

3D position, controlled by the automated gantry.  Treatment success was defined as no flow 

detectable on color Doppler after treatment using the lowest velocity scale setting and pre-gain 

settings.  If occlusion was incomplete, re-ablation of the same target using the same protocol was 

attempted once, if judged safe to do so, before exposure of a subsequent target.  Mechanical 

ventilation pauses of up to 90 s were required during HIFU exposure series, because respiratory 



movement could cause mistargeting.  Ventilation was planned to be resumed before the end of a 

HIFU exposure series if maternal EtCO2 rose to >8% or SpO2 fell to <94%, although this did not 

occur.   

Post-mortem and histology: Green dye was injected under ultrasound guidance into tissue 

adjacent to exposed placentomes for post-mortem identification.  Animals were sacrificed using 

pentobarbitone sodium, 120 mg/kg, by rapid intravenous injection (Pentoject, Animalcare) at the 

completion of the HIFU protocol (within 4 hours of its start) and a post-mortem examination was 

conducted to identify exposed placentomes and any iatrogenic harm to the mother (examination 

of adjacent organs) or fetus (external examination).  All treated and a smaller number of control 

placentomes were dissected, examined for gross pathological changes, photographed, and 

immersion fixed in 4% formaldehyde for 5 days before embedding in paraffin wax. Ten 

micrometer sections were stained with hematoxylin and eosin. 

Statistical analyses: Minute means and absolute values from blood sampling are expressed 

as mean ± standard error of the mean (SEM).  Summary measure analysis (area under the curve) 

was applied to the cardiovascular data for statistical analysis (71). Normality was assessed using 

the Shapiro Wilks test, followed by repeated measures two-way ANOVA (for time and treatment 

group) for parametric values and Kruskall-Wallis test for non-parametric values.  In the repeated 

measures (RM) ANOVA, if a significant interaction was demonstrated for time or treatment, post 

hoc Tukey’s or Sidak’s test was applied.  Statistical significance was accepted when p <0.05. 
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Tables: 

Variable 
Treatment 

Group 

  Baseline Exposure Series   Recovery p value p value 

  (-30 min)   (0 min)   (15 min)   (30 min)   (60 min) (* time) († treatment) 

pH 
HIFU  7.51 ± 0.02  7.50 ± 0.03  7.47 ± 0.03  7.49 ± 0.01 †  7.51 ± 0.02 † 0.27 0.007 

Sham  7.44 ± 0.01  7.43 ± 0.01  7.42 ± 0.01  7.40 ± 0.02  7.40 ± 0.02   

   
 

 
 

 
 

 
 

 
   

Arterial 

Base 

Excess 

(mmol.L-1) 

HIFU  8.2 ± 0.9  7.6 ± 0.7  7.4 ± 0.8  7.6 ± 0.8  7.2 ± 0.6 0.86 0.16 

Sham  

4.8 ± 1.5 

 

5.7 ± 1.1 

 

5.5 ± 1.0 

 

5.7 ± 1.1 

 

5.3 ± 1.3 
  

   
 

 
 

 
 

 
 

 
   

pCO2 

(mmHg) 

HIFU  40.0 ± 1.6  42.0 ± 3.4  43.8 ± 3.7  41.8 ± 1.0 †  38.6 ± 2.9 † 0.17 0.048 

Sham  48.7 ± 2.2  49.0 ± 4.0  54.3 ± 2.0  54.3 ± 1.3  52.7 ± 1.8   

   
 

 
 

 
 

 
 

 
   

Lactate 

(mmol.L-1) 

HIFU  1.2 ± 0.2  1.1 ± 0.2  1.1 ± 0.1  1.0 ± 0.1  1.1 ± 0.2 0.16 0.09 

Sham  0.7 ± 0.1  0.6 ± 0.1  0.6 ± 0.1  0.6 ± 0.1  0.6 ± 0.1   
 

  
 

 
 

 
 

 
 

 
   

Bicarbonate 

(mEq.L-1) 

HIFU  32.0 ± 1.0  31.8 ± 1.1  31.8 ± 0.8  31.7 ± 0.8  31.0 ± 1.0 0.32 0.84 

Sham  30.8 ± 1.4  31.8 ± 1.4  31.8 ± 1.3  31.8 ± 1.3  31.8 ± 1.3   

   
 

 
 

 
 

 
 

 
   

pO2 

(mmHg) 

HIFU  216.0 ± 47.5  200.4 ± 67.3  190.4 ± 74.2  186.2 ± 72.4  218.2 ± 64.2 0.60 0.71 

Sham  198.8 ± 25.4  169.8 ± 22.8  163.8 ± 23.4  183.3 ± 32.3  180.0 ± 26.2   

   
 

 
 

 
 

 
 

 
   

 

Oxyhemogl

obin 

Saturation 

(%) 

HIFU  102.3 ± 1.2  100.1 ± 2.2  97.6 ± 3.0  101.1 ± 1.6  101.9 ± 1.6 0.77 0.96 

Sham  

95.1 ± 7.8 

 

102.3 ± 1.3 

 

102.0 ± 1.5 

 

101.3 ± 1.9 

 

102.4 ± 1.1 

  

   
 

 
 

 
 

 
 

 
   

HIFU  8.0 ± 0.4  7.8 ± 0.4  8.0 ± 0.5  8.2 ± 0.4  8.6 ± 0.3 0.048 0.08 



Hemoglobi

n 

(g.dL-1) Sham  

8.9 ± 0.6 

 

9.0 ± 0.5 

 

9.1 ± 0.5 

 

9.6 ± 0.3 

 

9.7 ± 0.4 * 

  

   
 

 
 

 
 

 
 

 
   

Hematocrit 
HIFU  0.24 ± 0.01  0.24 ± 0.02  0.25 ± 0.02  0.25 ± 0.01  0.26 ± 0.01 0.0003 0.73 

Sham   0.24 ± 0.01   0.24 ± 0.01   0.25 ± 0.01   0.28 ± 0.01 *   0.28 ± 0.01*   

 

Table 1: Maternal arterial acid base and metabolic status 

Values represent mean ± SEM of maternal femoral arterial blood sampled at the start of the baseline period (-30 min), the start, 

middle, and end of the HIFU (n=5) or sham (n=6) exposure series (0, 15, 30 min), and the end of the recovery period (60 min).  

Significant differences are indicated as *p<0.05 for the effect of time vs. baseline; †p<0.05 for the effect of treatment group, 

repeated measures two-way ANOVA with post hoc Tukey and Sidak tests. 

 

 

 

 

 

 

 



Variable 
Treatment 

Group 

  Baseline Exposure Series   Recovery p value p value 

  (-30 min)   (0 min)   (15 min)   (30 min)   (60 min) (* time) († treatment) 

pH 
HIFU  7.27 ± 0.01  7.28 ± 0.01 †  7.26 ± 0.02 †  7.23 ± 0.01 *  7.18 ± 0.02* < 0.0001 0.02 

Sham  7.21 ± 0.03  7.21 ± 0.02  7.18 ± 0.02  7.17 ± 0.02 *  7.15 ± 0.03*   

   
 

 
 

 
 

 
 

 
   

Arterial Base 

Excess 

(mmol.L-1) 

HIFU  -0.4 ± 0.9  -0.2 ± 0.6  -0.6 ± 0.7  -1.8 ± 0.4  -4.4 ± 0.7 * 0.003 0.73 

Sham  
-1.2 ± 1.6 

 
-0.8 ± 0.8 

 
-2.2 ± 0.7 

 
-2.3 ± 0.8 

 
-2.5 ± 1.2 * 

  

   
 

 
 

 
 

 
 

 
   

pCO2 

(mmHg) 

HIFU  62.4 ± 3.7  61.8 ± 5.5  70.4 ± 11.4  69.4 ± 7.4  77.6 ± 6.9 * 0.003 0.30 

Sham  73.0 ± 4.3  76.5 ± 2.8  75.8 ± 3.5  75.3 ± 3.9  80.5 ± 5.5 *   

   
 

 
 

 
 

 
 

 
   

Lactate 

(mmol.L-1) 

HIFU  2.3 ± 0.4  2.2 ± 0.3  2.2 ± 0.3  2.8 ± 0.4  3.0 ± 0.4 * 0.0003 0.12 

Sham  1.7 ± 0.2  1.7 ± 0.2  1.8 ± 0.2  1.8 ± 0.2  2.3 ± 0.3 *   
 

  
 

 
 

 
 

 
 

 
   

Bicarbonate 

(mEq.L-1) 

HIFU  25.6 ± 1.3  26.4 ± 0.8  25.2 ± 0.8  25.0 ± 0.6  24.6 ± 0.2 0.22 0.91 

Sham  27.8 ± 1.7  28.7 ± 0.9  27.5 ± 1.3  27.7 ± 1.2  27.8 ± 0.8   

   
 

 
 

 
 

 
 

 
   

pO2 

(mmHg) 

HIFU  25.2 ± 1.1  25.0 ± 2.8  23.8 ± 3.3  23.0 ± 3.2  18.4 ± 0.9 * < 0.0001 0.21 

Sham  27.2 ± 1.2  28.3 ± 1.2  27.7 ± 1.2  26.3 ± 1.9  22.3 ± 1.9 *   

   
 

 
 

 
 

 
 

 
   

Oxyhemoglobin 

saturation 

(%) 

HIFU  72.8 ± 1.1  72.3 ± 2.9  69.3 ± 8.3  66.3 ± 7.4  46.8 ± 2.8 * < 0.0001 0.62 

Sham  
70.4 ± 7.5 

 
64.8 ± 2.9 

 
64.3 ± 3.9 

 
63.1 ± 4.7 

 
51.2 ± 9.5 * 

  

   
 

 
 

 
 

 
 

 
   

Hemoglobin 

(g.dL-1) 

HIFU  10.0 ± 0.2  10.2 ± 0.2  10.7 ± 0.3  11.0 ± 0.5  11.1 ± 0.2 * 0.0026 0.06 

Sham  9.3   ± 0.2  10.5 ± 0.3  9.8   ± 0.2  10.0 ± 0.2  10.7 ± 0.4 *   

   
 

 
 

 
 

 
 

 
   

Hematocrit 
HIFU  0.32 ± 0.01  0.33 ± 0.01  0.34 ± 0.02  0.35 ± 0.01 *  0.35 ± 0.01* 0.03 0.55 

Sham   0.27 ± 0.02   0.34 ± 0.02    0.32 ± 0.02   0.34 ± 0.02 *   0.33 ± 0.03*   
 

Table 2: Fetal arterial acid base and metabolic status 



Values represent mean ± SEM of fetal carotid arterial blood sampled at the start of the baseline period (-30 min), the start, 

middle, and end of the HIFU (n=5) or sham (n=6) exposure series (0, 15, 30 min), and the end of the recovery period (60 min).  

Significant differences are indicated as *p<0.05 for the effect of time vs. baseline, †p<0.05 for the effect of treatment group, 

repeated measures two-way ANOVA with post hoc Tukey and Sidak tests. 

  



Variable 
Treatment 

Group 

  Baseline Exposure Series   Recovery p value p value 

  (-30 min)   (0 min)   (15 min)   (30 min)   (60 min) (* time) († treatment) 

Carotid Arterial 

Oxygen Delivery 

(mmol.min-1) 

HIFU  
383 ± 30 

 
374 ± 39 

 
373 ± 41 

 
352 ± 28 

 
283 ± 19  0.21 0.63 

Sham  
359 ± 82 

 
361 ± 40 

 
312 ± 37 

 
334 ± 50 

 
281 ± 33    

   
 

 
 

 
 

 
 

 
   

Femoral Arterial 

Oxygen Delivery 

(mmol.min-1) 

HIFU  
116 ± 9 

 
106 ± 13 

 
73 ± 15 * 

 
67 ± 12 * 

 
55 ± 8 * < 0.0001 0.28 

Sham  
114 ± 14 

 
116 ± 13 

 
82 ± 10 *   99 ± 10 * 

 
91 ± 18 *   

   
 

 
 

 
 

 
 

 
   

Carotid : Femoral 

Oxygen Delivery 

Ratio 

HIFU  
3.1 ± 0.4 

 
3.2 ± 0.2 

 
4.8 ± 0.6 

 
5.2 ± 1.1 * 

 
4.6 ± 0.3 0.04 0.33 

Sham  
3.7 ± 1.0 

 
3.3 ± 0.5 

 
4.0 ± 0.7 

 
3.3 ± 0.7 

 
3.0 ± 0.4   

   
 

 
 

 
 

 
 

 
   

Carotid Arterial 

Glucose Delivery 

(µmol.min-1) 

HIFU  
61 ± 14 

 
57 ± 16 

 
64  ± 15 

 
77 ± 19 

 
72 ± 13 0.59 0.74 

Sham  
78 ± 14 

 
75 ± 12 

 
72  ± 14 

 
67 ± 16 

 
74 ± 19   

   
 

 
 

 
 

 
 

 
   

Femoral Arterial 

Glucose Delivery 

(µmol.min-1) 

HIFU  
21 ± 3 

 
19 ± 3 

 
15 ± 2 * 

 
16 ± 3 * 

 
19 ± 4 0.003 0.17 

Sham  
30 ± 6 

 
26 ± 3 

 
19 ± 3 * 

 
24 ± 4 * 

 
24 ± 3   

   
 

 
 

 
 

 
 

 
   

Carotid : Femoral 

Glucose Delivery 

Ratio 

HIFU  
3.0 ± 0.4 

 
2.9 ± 0.3 

 
4.2 ± 0.8 * 

 
4.7 ± 0.7 * 

 
4.0 ± 0.2 0.0004 0.26 

Sham   2.6 ± 0.4   2.7 ± 0.3   3.9 ± 0.7 *   2.9 ± 0.5 *   3.0 ± 0.5   

 

Table 3: Fetal substrate delivery 

Values represent mean ± SEM of fetal carotid and femoral arterial blood sampled at the start of the baseline period (-30 min), 

the start, middle, and end of the HIFU (n=5) or sham (n=6) exposure series (0, 15, 30 min), and the end of the recovery period 



(60 min).  Significant differences are indicated as *p<0.05 for the effect of time vs. baseline, RM two-way ANOVA with post 

hoc Tukey test. 

 



  

 

Figures: 

 

Fig. 1. Color Doppler and B-Mode ultrasound imaging of placental vascular ablation 

(A) Pre-treatment color Doppler imaging of a placentome. The intended vascular target is 

indicated by an arrow. (B) Post-treatment color Doppler imaging of the same 

placentome demonstrating “no flow” within the targeted vessel; (C) B-mode 

harmonic ultrasound imaging of hyperechoic region within the HIFU focal zone. 

 



 

Fig. 2. Macroscopic and microscopic results of HIFU exposures 

 (A) Tissue darkening and (B) tissue pallor involving the central area of a bisected 

placentome. (C) H&E section (scale bar 1 mm) of fetal vessels in control placentome. (D) 

H&E section (scale bar 1 mm) of fetal vessels in HIFU-exposed placentome, showing 

clot-filled vessel lumen. 



 

Figure 3: Maternal cardiovascular responses to HIFU or sham placental vascular ablation 

The graphs show mean values for each sequential minute ± SEM of percentage change 

from baseline during the baseline (-30-0 min), HIFU (n=5) or sham (n=6) ablation of 

placental vasculature (dashed box, 0-30 min), and recovery (30-60 min) periods. Black 

bar indicates the timing of significant change from baseline. Significant differences: * 

p<0.05 time vs. baseline; repeated measures two way ANOVA with post hoc Tukey test. 



 

Figure 4: Fetal cardiovascular responses to HIFU or sham placental vascular ablation 

The graphs show mean values for each sequential minute ± SEM of percentage change 

from baseline during the baseline (-30-0 min), HIFU (n=5) or sham (n=6) ablation of 

placental vasculature (dashed box, 0-30 min), and recovery (30-60 min) periods while 

under general anaesthesia. Black bar indicates the timing of significant change from 

baseline. Significant differences: * p<0.05 time vs. baseline; repeated measures two way 

ANOVA with post hoc Tukey test. 



 

Figure 5: Diagram of side view of equipment setup and HIFU exposure placement  

(A) Setup of the ring-shaped HIFU transducer and central diagnostic ultrasound probe 

within a bag of degassed water. (B) Placement of HIFU lesions in a linear track across 

the origin of the fetal vessels. 



 

Supplementary Materials: 

 

Figure S1: Surgical and experimental timeline 

Schema of experimental timeline showing total length of general anaesthesia divided into time for surgical and experimental procedures, including the baseline, HIFU/sham exposures, and 

recovery periods. 

 

 

 

 

 

 



 

Placentome 

number 

Harmonic US Doppler US Photography Histology 

Successful 

treatment 

outcome? 

(of 3 criteria) 

Complications 
Hyperecho 

(>2 

successive 

B Mode) 

Structural 

change 

(B Mode) 

"No 

flow" 

color 

Doppler 

Retreatment 

needed 

Tissue 

paling 

(visual) 

Tissue 

darkening 

(visual) 

Clot in 

vessel 

Shrunken / 

collapsed 

vessels 

Cellular 

debris 

Extravas- 

ation 

Cross-

sectional 

area 

damaged 

(%) 

1 Yes Yes Yes No Yes Yes Yes Yes Yes Yes 59 Yes None 

2 Yes Yes Yes No Yes Yes Yes No Yes Yes 23 Yes None 

3 Yes Yes Yes No Yes Yes Yes No No Yes 27 Yes None 

4 Yes Yes Yes No Yes Yes Yes No Yes Yes 9 Yes None 

5 Yes No Yes No Yes Yes Yes Yes Yes Yes 30 Yes None 

6 Yes Yes Yes No No Yes Tissue too friable to obtain sections 2/3 criteria None 

7 Yes No Yes No Yes No No clear view Yes Yes 19 2/3 criteria None 

8 Yes Yes Yes No No Yes No clear view No Yes 34 2/3 criteria None 

9 Yes No Yes No Yes Yes Yes No Yes Yes 24 Yes None 

10 No  No No Yes 

Yes Yes Yes No Yes Yes 41 

No Tissue damage involved edge 

of placentome; no damage to  

uterus, adjacent placentomes, 

mother, or fetus 10 (retreat) 
Yes No Yes No Yes 

11 No  No No Not attempted Yes Yes No No Yes Yes 16 No None 

12 Yes No Yes No Yes Yes Yes No Yes Yes 22 Yes None 

13 Yes No Yes No Yes Yes Yes No Yes Yes 41 Yes None 

14 Yes No Yes No Yes Yes Yes No Yes Yes 48 Yes None 

15 Yes No Yes No Yes Yes No Yes Yes Yes 13 Yes None 

16 Yes No Yes No Yes Yes Yes No Yes Yes 15 Yes None 

17 Yes Yes Yes No Yes Yes Yes No Yes Yes 53 Yes None 

18 Yes Yes Yes No Yes Yes Yes Yes Yes Yes 41 Yes None 

19 Yes No Yes No Yes Yes Yes Yes Yes Yes 63 Yes None 

20 No  Yes No Yes 
Yes Yes No No Yes Yes 44 No 

Vessel hemorrhage after 1st 

exposure series, not resolved 

by retreatment 20 (retreat) Yes Yes No Not attempted 

21 Yes Yes Yes No Yes Yes Yes Yes Yes Yes 5 Yes None 

22 Yes Yes Yes No Yes No Yes Yes Yes Yes 33 Yes None 

23 Yes No Yes No Yes Yes Yes Yes Yes Yes 46 Yes None 

24 Yes Yes Yes No Yes No Yes Yes Yes Yes 31 Yes None 

25 Yes No Yes No Yes Yes Yes No Yes Yes 46 Yes None 



26 Yes No Yes No No Yes Yes Yes Yes Yes 39 Yes None 

27 Yes Yes Yes No Yes Yes Yes Yes Yes Yes 43 Yes None 

28 Yes No Yes No No Yes Yes Yes Yes Yes 20 Yes None 

29 Yes Yes Yes No No Yes Yes Yes Yes Yes 30 Yes None 

30 Yes Yes Yes No No  Yes Tissue too friable to obtain sections 2/3 criteria None 

 

 

Table S1: Summary of treatment outcomes.  

Outcomes and complications determined by tissue responses seen on harmonic and Doppler ultrasound imaging, visual examination, and photography at post-mortem and histological 

examination of tissues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Placentome 

number 

 Exposures 

Power 

(dBm) 

 

In Situ 

ISPTA 

(W.cm-2) 

Duration 

(s) 

Interval 

(s) 

Linear 

movement 

gantry 

(mm) 

Depth of 

target 

(mm) 

Number of 

exposures 

Number of 

breath holds 

Time to 

complete 

treatment 

(s) 

1 -5 3959 5 5 12 27 7 1 136 

2 -5 5537 5 5 12 10 7 1 119 

3 -5 5359 5 5 18 11 10 1 135 

4 -5 5521 5 5 8 10 5 1 165 

5 -5 5117 5 5 6 14 4 1 105 

6 -5 5560 5 5 8 9 5 1 93 

7 -5 5689 5 5 8 8 5 1 81 

8 -5 5547 5 5 10 10 6 1 92 

9 -5 4884 5 5 8 16 5 1 106 

10 -5 5005 5 5 8 16 5 1 137 

10 (retreat) -5 4832 5 5 8 16 5 1 182 

11 -5 4506 5 5 10 20 6 1 99 

12 -5 4579 5 5 12 19 7 1 114 

13 -5 5184 5 5 10 13 6 1 142 

14 -5 5053 5 5 12 14 7 1 111 

15 -5 5107 5 5 8 14 5 1 92 

16 -5 5059 5 5 10 14 6 1 88 

17 -5 5070 5 5 12 14 7 1 146 

18 -5 5124 5 5 10 14 6 1 95 

19 -5 5241 5 5 8 13 5 1 89 

20 -5 5337 5 5 2 12 6 1 134 

20 (retreat) -5 5442 5 5 10 12 6 1 359 

21 -5 5385 5 5 10 11 6 1 107 

22 -5 5168 5 5 10 13 6 1 125 

23 -5 5137 5 5 8 14 5 1 70 

24 -5 5015 5 5 10 15 6 1 87 

25 -5 5541 5 5 8 10 5 1 84 

26 -5 5561 5 5 8 9 5 1 89 

27 -5 5605 5 5 10 9 6 1 97 

28 -5 5583 5 5 8 9 5 1 86 

29 -5 4963 5 5 8 15 5 1 128 

30 -5 4546 5 5 12 20 7 1 100 

 

Table S2: Summary of exposure conditions.  

Exposure conditions used to attempt placental vascular occlusion in the 30 placental targets described in this paper. 

 
 
 
 
 
 
 
 
 
 
 

 


