4 research outputs found

    Insights into the Wnt Signaling Pathway Evolution

    Get PDF
    Animals’ Wnt signaling pathways are highly preserved signal transduction pathways, which play a crucial role in embryogenesis and adult tissue homeostasis. This chapter reviews the three major Wnt pathways, focusing on some critical proteins in the Wnt/β-catenin path in terms of their evolution and role in homeostasis. Wnt proteins act as a gateway between extracellular, cytoplasmic, and nuclear components to transmit signaling pathways. The Frizzled (FZD) family as G-protein-coupled receptors activates the signaling pathways by binding to Wnt ligands. LRP5/6, members of the family of low-density lipoprotein receptors (LDLR), associate with FZD receptor and Wnt ligands as co-receptors to initiate the Wnt/β-catenin pathway. The Wnt/β-catenin pathway is regulated by antagonists such as the Dickkopf and secreted Frizzled-related protein (SFRP) families

    Computational analysis of fusion protein of anti-HER2 scFv and alpha luffin: A new immunotoxin protein for HER2 positive cancers

    No full text
    The present study deals with the computational design and analysis of a novel fusion protein based on a single chain variable fragment that binds to the extracellular domain of human epidermal growth factor receptor 2 (HER2) in breast cancer cells. Alpha luffin, a small ribosome inactivating protein (RIP), was attached to the anti-HER2 antibody fragment. I-TASSER modeling provided the full-length structure of the fusion protein. Molecular docking evaluated the molecular interactions of the complementarity-determining regions of designed fusion protein to HER2. Energy minimization and molecular dynamics simulations were conducted to refine the complexes. RMSD plot revealed reasonable stability of the fusion protein during the simulation. The free binding energy profile of complexes affirmed a favorable binding affinity of proteins in complex with HER2 using molecular mechanics Poisson-Boltzmann surface area (G-MMPBSA) algorithm. In general, this approach looks promising in the development of new fusion proteins in terms of immunotoxins with appropriate cytotoxicity

    Identifying and predicting the pathogenic effects of a novel variant inducing severe early onset MMA: a bioinformatics approach

    No full text
    Abstract Background Methylmalonic acidemia (MMA) is a rare metabolic disorder resulting from functional defects in methylmalonyl-CoA mutase. Mutations in the MMAB gene are responsible for the cblB type of vitamin B12-responsive MMA. Results This study used Whole-exome sequencing (WES), Sanger sequencing, linkage analysis, and in-silico evaluation of the variants’ effect on protein structure and function to confirm their pathogenicity in a 2-day-old neonate presenting an early-onset metabolic crisis and death. WES revealed a homozygous missense variant on chromosome 12, the NM_052845.4 (MMAB):c.557G > A, p.Arg186Gln, in exon 7, a highly conserved and hot spot region for pathogenic variants. After being confirmed by Sanger sequencing, the wild-type and mutant proteins’ structure and function were modeled and examined using in-silico bioinformatics tools and compared to the variant NM_052845.4 (MMAB):c.556C > T, p.Arg186Trp, a known pathogenic variant at the same position. Comprehensive bioinformatics analysis showed a significant reduction in the stability of variants and changes in protein–protein and ligand–protein interactions. Interestingly, the variant c.557G > A, p.Arg186Gln depicted more variations in the secondary structure and less binding to the ATP and B12 ligands compared to the c.556C > T, p.Arg186Trp, the known pathogenic variant. Conclusion This study succeeded in expanding the variant spectra of the MMAB, forasmuch as the variant c.557G > A, p.Arg186Gln is suggested as a pathogenic variant and the cause of severe MMA and neonatal death. These results benefit the prenatal diagnosis of MMA in the subsequent pregnancies and carrier screening of the family members. Furthermore, as an auxiliary technique, homology modeling and protein structure and function evaluations could provide geneticists with a more accurate interpretation of variants’ pathogenicity. Graphical Abstrac
    corecore