108 research outputs found

    Association of muscarinic M(3) receptors and Kir6.1 with caveolae in human detrusor muscle.

    Get PDF
    Caveolae are 50-100nm large membrane invaginations that play a role in cellular signaling. The aim of the present study was to assess whether muscarinic M(3) receptors and the K(ATP) channel subunit Kir6.1 are associated with human detrusor caveolae, and to pharmacologically assess the relevance of this organization for contractility. Detrusor strips were dissected and used in ultrastructural, biochemical and mechanical studies. Caveolae were manipulated by cholesterol desorption using mβcd (methyl-β-cyclodextrin). Mβcd disrupted caveolae and caused a cholesterol-dependent ~3-fold rightward shift of the concentration-response curve for the muscarinic receptor agonist carbachol. The effect of mβcd was inhibited by the K(ATP) blockers glibenclamide, repaglinide and PNU-37883, and it was mimicked by the K(ATP) activator levcromakalim. Immunoelectron microscopy showed muscarinic M(3) receptors and Kir6.1 to be enriched in caveolae. In conclusion, pharmacological K(ATP) channel inhibition antagonizes the effect of caveolae disruption on muscarinic contractility in the human detrusor, and the K(ATP) channel subunit Kir6.1 co-localizes with M(3) receptors in caveolae

    Myocardin regulates exon usage in smooth muscle cells through induction of splicing regulatory factors

    Get PDF
    Differentiation of smooth muscle cells (SMCs) depends on serum response factor (SRF) and its co-activator myocardin (MYOCD). The role of MYOCD for the SMC program of gene transcription is well established. In contrast, the role of MYOCD in control of SMC-specific alternative exon usage, including exon splicing, has not been explored. In the current work we identified four splicing factors (MBNL1, RBPMS, RBPMS2, and RBFOX2) that correlate with MYOCD across human SMC tissues. Forced expression of MYOCD family members in human coronary artery SMCs in vitro upregulated expression of these splicing factors. For global profiling of transcript diversity, we performed RNA-sequencing after MYOCD transduction. We analyzed alternative transcripts with three different methods. Exon-based analysis identified 1637 features with differential exon usage. For example, usage of 3 ' exons in MYLK that encode telokin increased relative to 5 ' exons, as did the 17 kDa telokin to 130 kDa MYLK protein ratio. Dedicated event-based analysis identified 239 MYOCD-driven splicing events. Events involving MBNL1, MCAM, and ACTN1 were among the most prominent, and this was confirmed using variant-specific PCR analyses. In support of a role for RBPMS and RBFOX2 in MYOCD-driven splicing we found enrichment of their binding motifs around differentially spliced exons. Moreover, knockdown of either RBPMS or RBFOX2 antagonized splicing events stimulated by MYOCD, including those involving ACTN1, VCL, and MBNL1. Supporting an in vivo role of MYOCD-SRF-driven splicing, we demonstrate altered Rbpms expression and splicing in inducible and SMC-specific Srf knockout mice. We conclude that MYOCD-SRF, in part via RBPMS and RBFOX2, induce a program of differential exon usage and alternative splicing as part of the broader program of SMC differentiation.Peer reviewe

    Size and charge selectivity of the glomerular filter in early experimental diabetes mellitus in rats.

    Get PDF
    Abstract Microalbuminuria is an early sign of diabetic nephropathy. The aim of the present study was to investigate whether the changes of the glomerular filtration barrier in early experimental diabetes are due to size- or charge-selective alterations. Wistar rats, made diabetic by streptozotocin (STZ) and having their blood glucose maintained at approximately 20 mM for 3 or 9 wk, were compared with age-matched controls. Glomerular clearances of native albumin (Cl-HSA) and neutralized albumin (Cl-nHSA) were assessed using a renal uptake technique. Glomerular filtration rate and renal plasma flow were assessed using (51)Cr-EDTA and [125I]iodohippurate, respectively. In a separate set of animals, diabetic for 9 wk, and in controls, glomerular sieving coefficients (theta) for neutral FITC-Ficoll (molecular radius: 15-90 A) were assessed using size exclusion chromatography. At 3 wk of diabetes, Cl-HSA and Cl-nHSA remained unchanged, indicating no alteration in either size or charge selectivity. By contrast, at 9 wk of diabetes, there was a twofold increase of Cl-HSA, whereas Cl-nHSA remained largely unchanged, at first suggesting a glomerular charge defect. However, according to a two-pore model, the number of large pores, assessed from both Ficoll and Cl-HSA, increased twofold. In addition, a small reduction in proximal tubular reabsorption was observed at 3 wk, which was further reduced at 9 wk. In conclusion, no functional changes were observed in the glomerular filtration barrier at 3 wk of STZ-induced diabetes, whereas at 9 wk there was a decrease in size selectivity due to an increased number of large glomerular pores

    Nature of glomerular capillary permeability changes following acute renal ischemia/reperfusion (I/R) injury in rats.

    Get PDF
    This study was performed to evaluate the alterations of glomerular filtration barrier characteristics following acute renal ischemia-reperfusion (I/R). Ischemia was induced in anesthetized rats by unilateral renal artery occlusion for either 20 or 60 min, followed by reperfusion during 20 or 60 min, respectively, with the contralateral kidney serving as control. Sieving coefficients (theta) were obtained by analyzing Ficoll [mol.radius (a(e)) 13-85 angstrom] in urine and plasma after 20 and 60 min I/R. Furthermore, theta for human serum albumin (HSA) was estimated using a tissue uptake technique after 20 and 60 min of I/R, while clearance of HSA compared with that for neutralized HSA (nHSA) was assessed after 20 min of I/R only. Glomerular filtration rate (GFR) was measured by [Cr-51] EDTA and inulin. I/R reduced GFR and increased theta for Ficoll molecules of a(e) > 55 angstrom and theta for albumin. theta for Ficoll vs. a(e), analysed using a two-pore model, demonstrated that, despite increases in theta, the large-pore fractional ultrafiltration coefficient (alpha(L)) was unchanged after 20 min of I/R, owing to the decline in GFR, but increased after 60 min of I/R. However, the apparent alpha(L) for albumin increased already after 20 min of I/R (P < 0.005) and the nHSA/HSA clearance ratio was slightly reduced, possibly reflecting a diminished negative charge barrier. In conclusion, after 20 min of I/R, indications of a reduced charge selectivity were noted, while after 60 min of I/R, there was mainly a reduction in size selectivity, compatible with an increased formation of large pores

    Transvascular protein transport in mice lacking endothelial caveolae.

    Get PDF
    Caveolae are Omega-shaped vesicular structures postulated to play a role in transvascular protein transport. Studies on mice lacking endothelial caveolae, caveolin-1 knockout (Cav-1-KO) mice, indicate increased macromolecular transport rates. This was postulated to be due to the appearance of an alternative pathway. The present study tested whether an alternative pathway had appeared in Cav-1-KO mice. Male Cav-1-KO (n=12) and male control mice (n=13) were intubated and anesthetized using 2% isoflurane. I-125-labeled albumin, I-131-labeled immunoglobulin M (IgM), and polydisperse FITC-Ficoll were administered intravenously. During tracer administration, a 90-min peritoneal dialysis dwell was performed. Clearance of tracers to dialysate and permeability-surface area product for glucose were assessed. Transvascular protein transport was higher in Cav-1-KO compared with control mice. Albumin clearance from plasma to peritoneum was 0.088 +/- 0.008 mu l/min in control and 0.179 +/- 0.012 mu l/min in Cav-1-KO (P = 0.001) mice. IgM clearance was 0.049 +/- 0.003 and 0.083 +/- 0.010 mu l/min in control and Cav-1-KO mice, respectively (P = 0.016). Ficoll clearance was increased in Cav-1-KO mice. In conclusion, the lack of caveolae in Cav-1-KO mice resulted in a marked increase in macromolecular transport. A two-pore analysis of the Ficoll clearance data revealed that the higher transport rate in Cav-1-KO mice was not compatible with the appearance of an alternative pathway for macromolecular transport. In contrast, the higher transperitoneal protein and Ficoll clearance is consistent with passive porous transport through an unperturbed two-pore system, presumably at an elevated capillary hydraulic pressure. Alternatively, the data may be explained by reductions in the selectivity of the endothelial glycocalyx, leading to an increased capillary hydraulic conductivity and large solute filtration

    Peocolipase and enterostatin- Functions during high-fat feeding

    No full text
    Enterostatin is a peptide formed in the stomach and intestine during the activation of pancreatic/gastric procolipase. Procolipase is a necessary cofactor for lipase. These two proteins contribute to the breakdown of dietary triglycerides in the intestine. Enterostatin has been found to act as a satiety factor, selectively inhibiting fat intake both through sites in the gastrointestinal tract and through sites in the central nervous system, including the hypothalamus and amygdala. In this thesis the amino acid sequence of enterostatin from rat, mouse cat and pig was determined. Rat and mouse had the sequence APGPR, while cat and pig had the sequence VPDPR. The amount of colipase in relation to lipase was also investigated and found to be 0.5 for rat and mouse and 3 in cat and pig. Enterostatin (APGPR), supplied in the food for 25 days, was found to decrease body weight and high-fat food intake in mice housed at 29°C. At the same time enterostatin increased the mRNA expression of uncoupling protein 1 (UCP1) in brown adipose tissue and the expression of UCP2 in stomach and duodenum. The tissue uptake of procolipase was examined in rat. Procolipase was taken up through active transport mechanisms by the upper gastrointestinal tract (stomach, duodenum, ileum and pancreas) as well as by the brain. The long-tem effect of high-fat feeding on the mRNA expression of pancreatic lipase and colipase was investigated. High-fat feeding decreased the mRNA expression of both lipase and colipase at the end of the experimental period. These studies show that enterostatin is involved in the long-term regulation of body weight, probably by decreasing high-fat food intake and increasing thermogenesis. Also, an alternative way for enterostatin to reach the brain was identified via the uptake of procolipase

    Disproportionally low clearance of macromolecules from the plasma to the peritoneal cavity in a mouse model of peritoneal dialysis (PD).

    No full text
    Background. This study was performed to establish a model for quantitative measurements of a number of basic peritoneal transport parameters, particularly transperitoneal clearances (Cl) of macromolecules, during mouse peritoneal dialysis. Methods. Mice were anaesthetized using 3% isofluorane inhalation anaesthesia. The right jugular vein and the left femoral artery were cannulated for infusion and sampling purposes and for registration of (mean) arterial blood pressure. Access to the peritoneal cavity occurred via a thin abdominal catheter (Ø 0.7 mm). About 2.5 ml of either 4% (n = 9) or 1.5% (n = 5) glucose containing PD-fluid were instilled intraperitoneally (i.p.). Dialysate volume was followed vs time using i.p. RISA (125I human serum albumin) as a volume marker, after correcting for RISA mass disappearance from the peritoneum, assessed separately (n = 11). Microsampling (10 µl) of plasma and dialysate was performed for determinations of glucose, haematocrit, radioactivity (RISA and 51Cr-EDTA) and Ficoll. Results. The i.p. volume vs time curves [VD(t)] were, after scaling, similar to those observed in humans (and in rats). Clearance of RISA out of the peritoneal cavity (Clout) was 9.33 ± 0.83 µl/min and the clearance of RISA to plasma (Cl->P) and the RISA clearance to the peritoneal cavity (Cl->D) were 1.49 ± 0.13 and 0.084 ± 0.008 µl/min, respectively. The peritoneal transport coefficients for 51Cr-EDTA and glucose, as well as Clout and Cl->P, were 13–17% of those previously assessed in 300 g rats, whereas Cl->D was only ~2% of that in rat. Conclusions. All peritoneal transport parameters measured, except Cl->D, scaled very well to the corresponding human data. The mechanisms of the disproportionally low clearance of macromolecules from the plasma to the peritoneal cavity in mice remain elusive and warrant further study

    Size and charge selectivity of the glomerular filter in early experimental diabetes in rats

    No full text
    Microalbuminuria is an early sign of diabetic nephropathy. The aim of the present study was to investigate whether the changes of the glomerular filtration barrier in early experimental diabetes are due to size- or charge-selective alterations. Wistar rats, made diabetic by streptozotocin (STZ) and having their blood glucose maintained at similar to 20 mM for 3 or 9 wk, were compared with age-matched controls. Glomerular clearances of native albumin (C1-HSA) and neutralized albumin (C1-nHSA) were assessed using a renal uptake technique. Glomerular filtration rate and renal plasma flow were assessed using Cr-51-EDTA and [ I-125]iodohippurate, respectively. In a separate set of animals, diabetic for 9 wk, and in controls, glomerular sieving coefficients (theta) for neutral FITC-Ficoll (molecular radius: 15-90 angstrom) were assessed using size exclusion chromatography. At 3 wk of diabetes, C1-HSA and C1-nHSA remained unchanged, indicating no alteration in either size or charge selectivity. By contrast, at 9 wk of diabetes, there was a twofold increase of C1-HSA, whereas C1-nHSA remained largely unchanged, at first suggesting a glomerular charge defect. However, according to a two-pore model, the number of large pores, assessed from both Ficoll and C1-HSA, increased twofold. In addition, a small reduction in proximal tubular reabsorption was observed at 3 wk, which was further reduced at 9 wk. In conclusion, no functional changes were observed in the glomerular filtration barrier at 3 wk of STZ-induced diabetes, whereas at 9 wk there was a decrease in size selectivity due to an increased number of large glomerular pores
    • …
    corecore