38 research outputs found
The Beginning and Evolution of the Universe
We review the current standard model for the evolution of the Universe from
an early inflationary epoch to the complex hierarchy of structure seen today.
We summarize and provide key references for the following topics: observations
of the expanding Universe; the hot early Universe and nucleosynthesis; theory
and observations of the cosmic microwave background; Big Bang cosmology;
inflation; dark matter and dark energy; theory of structure formation; the cold
dark matter model; galaxy formation; cosmological simulations; observations of
galaxies, clusters, and quasars; statistical measures of large-scale structure;
and measurement of cosmological parameters. We conclude with discussion of some
open questions in cosmology. This review is designed to provide a graduate
student or other new worker in the field an introduction to the cosmological
literature.Comment: 69 pages. Invited review article for Publications of the Astronomical
Society of the Pacific. Supplementary references, tables, and more concise
PDF file at http://www.physics.drexel.edu/univers
Recommended from our members
Short-term pacing in the mouse alters cardiac expression of connexin43
Background: Cardiac insults such as ischemia, infarction, hypertrophy and dilatation are often accompanied by altered abundance and/or localization of the connexin43 gap junction protein, which may predispose towards arrhythmic complications. Models of chronic dyssynchronous cardiac activation have also been shown to result in redistribution of connexin43 in cardiomyocytes. We hypothesized that alterations in connexin43 expression and localization in the mouse heart might be induced by ventricular pacing over a short period of time.
Results: The subdiaphragmatic approach was used to pace a series of wild type mice for six hours before the hearts were removed for analysis. Mice were paced at 10–15% above their average anesthetized sinus rate and monitored to ensure 1:1 capture. Short-term pacing resulted in a significant reduction in connexin43 mRNA abundance, a partial redistribution of connexin43 from the sarcolemma to a non-sarcolemmal fraction, and accumulation of ubiquitinated connexin43 without a significant change in overall connexin43 protein levels. These early pacing-induced changes in connexin43 expression were not accompanied by decreased cardiac function, prolonged refractoriness or increased inducibility into sustained arrhythmias.
Conclusion: Our data suggest that short-term pacing is associated with incipient changes in the expression of the connexin43 gap junction, possibly including decreased production and a slowed rate of degradation. This murine model may facilitate the study of early molecular changes induced by pacing and may ultimately assist in the development of strategies to prevent gap junction remodeling and the associated arrhythmic complications of cardiac disease
Calsyntenins Are Secretory Granule Proteins in Anterior Pituitary Gland and Pancreatic Islet α Cells
Calsyntenins are members of the cadherin superfamily of cell adhesion molecules. They are present in postsynaptic membranes of excitatory neurons and in vesicles in transit to neuronal growth cones. In the current study, calsyntenin-1 (CST-1) and calsyntenin-3 (CST-3) were identified by mass spectrometric analysis (LC-MS/MS) of integral membrane proteins from highly enriched secretory granule preparations from bovine anterior pituitary gland. Immunofluorescence microscopy on thin frozen sections of rat pituitary revealed that CST-1 was present only in gonadotropes where it colocalized with follicle-stimulating hormone in secretory granules. In contrast, CST-3 was present not only in gonadotrope secretory granules but also in those of somatotropes and thyrotropes. Neither protein was detected in mammatropes. In addition, CST-1 was also localized to the glucagon-containing secretory granules of α cells in the pancreatic islets of Langerhans. Results indicate that calsyntenins function outside the nervous system and potentially are modulators of endocrine function. (J Histochem Cytochem 56:381–388, 2008
Endosomal KATP channels as a reservoir after myocardial ischemia: a role for SUR2 subunits
ATP-sensitive K+ (KATP) channels, composed of inward rectifier K+ (Kir)6.x and sulfonylurea receptor (SUR)x subunits, are expressed on cellular plasma membranes. We demonstrate an essential role for SUR2 subunits in trafficking KATP channels to an intracellular vesicular compartment. Transfection of Kir6.x/SUR2 subunits into a variety of cell lines (including h9c2 cardiac cells and human coronary artery smooth muscle cells) resulted in trafficking to endosomal/lysosomal compartments, as assessed by immunofluorescence microscopy. By contrast, SUR1/Kir6.x channels efficiently localized to the plasmalemma. The channel turnover rate was similar with SUR1 or SUR2, suggesting that the expression of Kir6/SUR2 proteins in lysosomes is not associated with increased degradation. Surface labeling of hemagglutinin-tagged channels demonstrated that SUR2-containing channels dynamically cycle between endosomal and plasmalemmal compartments. In addition, Kir6.2 and SUR2 subunits were found in both endosomal and sarcolemmal membrane fractions isolated from rat hearts. The balance of these KATP channel subunits shifted to the sarcolemmal membrane fraction after the induction of ischemia. The KATP channel current density was also increased in rat ventricular myocytes isolated from hearts rendered ischemic before cell isolation without corresponding changes in subunit mRNA expression. We conclude that an intracellular pool of SUR2-containing KATP channels exists that is derived by endocytosis from the plasma membrane. In cardiac myocytes, this pool can potentially play a cardioprotective role by serving as a reservoir for modulating surface KATP channel density under stress conditions, such as myocardial ischemia