84 research outputs found

    Bestrijden van klein venijn

    Get PDF
    Rede, in verkorte vorm uitgesproken ter gelegenheid van het aanvaarden van het ambt van bijzonder hoogleraar met als leeropdracht Immuno-virologie, aan het Erasmus MC, faculteit van de Erasmus Universiteit Rotterdam op 1 oktober 201

    Viral vector-based influenza vaccines

    Get PDF
    Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors

    Developing Universal Influenza Vaccines: Hitting the Nail, Not Just on the Head

    Get PDF
    Influenza viruses have a huge impact on public health. Current influenza vaccines need to be updated annually and protect poorly against antigenic drift variants or novel emerging subtypes. Vaccination against influenza can be improved in two important ways, either by inducing more broadly protective immune responses or by decreasing the time of vaccine production, which is relevant especially during a pandemic outbreak. In this review, we outline the current efforts to develop so-called “universal influenza vaccines”, describing antigens that may induce broadly protective immunity and novel vaccine production platforms that facilitate timely availability of vaccines

    Advances in influenza vaccination

    Get PDF
    Influenza virus infections yearly cause high morbidity and mortality burdens in humans, and the development of a new influenza pandemic continues to threaten mankind as a Damoclean sword. Influenza vaccines have been produced by using egg-based virus growth and passaging techniques that were developed more than 60 years ago, following the identification of influenza A virus as an etiological agent of seasonal influenza. These vaccines aimed mainly at eliciting neutralizing antibodies targeting antigenically variable regions of the hemagglutinin (HA) protein, which requires regular updates to match circulating seasonal influenza A and B virus strains. Given the relatively limited protection induced by current seasonal influenza vaccines, a more universal influenza vaccine that would protect against more - if not all - influenza viruses is among the largest unmet medical needs of the 21st century. New insights into correlates of protection from influenza and into broad B- and T-cell protective anti-influenza immune responses offer promising avenues for innovative vaccine development as well as manufacturing strategies or platforms, leading to the development of a new generation of vaccines. These aim at the rapid and massive production of influenza vaccines that provide broad protective and long-lasting immunity. Recent advances in influenza vaccine research demonstrate the feasibility of a wide range of approaches and call for the initiation of preclinical proof-of-principle studies followed by clinical trials in humans

    A single amino acid substitution in hypervariable region 5 of the envelope protein of feline immunodeficiency virus allows escape from virus neutralization.

    Get PDF
    We infected a specific-pathogen-free cat (cat 14) with molecularly cloned feline immunodeficiency virus clone 19k1 (FIV19k1 [K. H. J. Siebelink, I. Chu, G. F. Rimmelzwaan, K. Weijer, A. D. M. E. Osterhaus, and M. L. Bosch, J. Virol. 66:1091-1097, 1992]). Serum of this cat obtained 22 weeks postinfection (serum 1422) neutralized FIV19k1 but not FIV19k32, which is 99.3% identical to FIV19k1 in the envel

    A determinant of feline immunodeficiency virus involved in Crandell feline kidney cell tropism.

    Get PDF
    Viral progeny of the molecular clone 19k1 of feline immunodeficiency virus (FIV) can infect feline T-cells but not Crandell feline kidney (CrFK) cells. In contrast, the biological isolate FIV-AM6c, which was CrFK adapted by co-cultivation of FIV-AM6 infected thymocytes with CrFK cells, can infect both thymocytes and CrFK cells. The envelope gene of FIV-AM6c was amplified by polymerase chain reaction using DNA from infected CrFK cells, an

    Induction and characterization of monoclonal anti-idiotypic antibodies reactive with idiotopes of canine parvovirus neutralizing monoclonal antibodies.

    Get PDF
    Monoclonal anti-idiotypic (anti-Id) antibodies (Ab2) were generated against idiotypes (Id) of canine parvovirus (CPV) specific monoclonal antibodies (MoAbs). The binding of most of these anti-Id antibodies to their corresponding Id could be inhibited by antigen, thus classifying these anti-Id antibodies as Ab2 gamma or Ab2 beta. By inhibiting experiments it was shown that these anti-Id antibodies did not recognize interspecies cross-

    Inhibition of influenza virus replication by nitric oxide

    Get PDF
    Nitric oxide (NO) has been shown to contribute to the pathogenesis of influenza virus-induced pneumonia in mouse models. Here we show that replication of influenza A and B viruses in Mabin Darby canine kidney cells is severely impaired by the NO donor, S-nitroso-N-acetylpenicillamine. Reduction of productively infected cells and virus production proved to correlate with inhibition of viral RNA synthesis, indicating that NO affects an early step in the replication cycle of influenza viruses

    Purification of infectious canine parvovirus from cell culture by affinity chromatography with monoclonal antibodies.

    Get PDF
    Immuno affinity chromatography with virus neutralizing monoclonal antibodies, directed to the haemagglutinating protein of canine parvovirus (CPV) was used to purify and concentrate CPV from infected cell culture. The procedure was monitored by testing the respective fractions in an infectivity titration system, in an ELISA, in a haemagglutination assay and by negative contrast electron microscopy to quantify CPV or CPV antigen. The degree of purification was further estimated by testing the fractions for total protein content in a colorimetric method, for bovine serum albumin content in an ELISA and by SDS-PAGE. Over 99% of the contaminating proteins proved to be removed, and 20% or 70-90% of infectious CPV or CPV antigen, respectively, was recovered
    • …
    corecore