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Abstract 

Viral progeny of the molecular clone 19kl of feline immunodeficiency virus (FIV) can infect 
feline T-cells but not Crandell feline kidney (CrFK) cells. In contrast, the biological isolate FlV- 
AM6c, which was CrFK adapted by co-cultivation of FIV-AM6 infected thymocytes with CrFK cells, 
can infect both thymocytes and CrFK cells. The envelope gene of FIV-AM6c was amplified by 
polymerase chain reaction using DNA from infected CrFK cells, and subsequently cloned and 
sequenced. To map viral determinants of CrFK cell tropism, chimeric viruses with a 19kl background 
containing envelope gene fragments of FIV-AM6c were constructed. CrFK cells were transfected 
with DNA of these chimeric clones and co-cultivated with thymocytes. After 3 days the CrFK cells 
and the thymocytes were cultured separately. FIV antigen could be detected in most of the thymocyte 

cultures within 14 days and in one of the CrFK cultures after 52 days. The resulting virus from this 
CrFK culture can infect both CrFK cells and thymocytes. The results of this study indicate that the 

envelope region contains determinants of CrFK tropism. The delay in replication indicates that also 
determinants other than those identified here are involved in CrFK cell tropism. More chimeric clones 

are being studied at present to map these determinants. 
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1. Introduction 

Feline immunodeficiency virus (FIV), like the other lentiviruses, displays a high degree 
of sequence variation in the envelope gene. Most of this variation maps to the so-called 

variable regions (Phillips et al., 1990; Pancino et al., 1993). In other lentivirus systems, 

this genetic variation often has biological consequences, e.g. with regard to cytopathic 
potential and cell tropism (Cheng-Mayer et al., 1990). The variable region number 3 (V3) 
of the human immunodeficiency virus type 1 (HIV- 1) envelope, which contains the prin- 
cipal neutralizing determinant, also contains the primary determinants for both cell tropism 

and for syncytium inducing capacity (Grimaila et al., 1992), although variation in both 
these parameters has also been mapped to regions other than V3 (Thali et al., 1991; Andeweg 
et al., 1993). 

FIV can infect a variety of cell types, like CD4 and CD8 positive T-cells, macrophages 
and astrocytes (Brunner and Pedersen, 1989; Dow et al., 1990; Brown et al., 1991). 
Furthermore some strains of FIV can infect Crandell feline kidney cells (CrFK cells) upon 
adaptation in vitro (Phillips et al., 1990). Infection of CrFK cells with FIV is widely used 

in virus neutralization assays. Using this system a variety of LlV neutralizing antibodies 
have been described. Most sera that neutralize FIV infection of CrFK cells tend to be broadly 

reactive, i.e. they all neutralize the different CrFK-adapted FIV strains, independent of the 
viral isolate against which they were initially raised (Tozzini et al., 1993). Such FIV 
neutralizing antibodies have also been generated in rabbits and mice using a synthetic 
peptide corresponding to the V3 region of the FIV envelope (Lombardi et al., 1993). This 
peptide also corresponds to an immunodominant epitope in FIV infected cats (Avrameas 
et al., 1992), which suggests that antibodies to this region contribute to the FIV-neutralizing 
activity in the sera of these cats. 

Recently we have described a virus neutralization assay for FIV using activated T cells, 
one of the natural target cells for the virus (Siebelink et al., 1993). With this assay we have 
only been able to demonstrate genotypic-specific virus neutralization: single point muta- 

tions, either induced in vitro, or naturally occurring, completely abolished virus neutrali- 
zation by a polyclonal serum. No evidence for broad cross-neutralization of FIV was found. 
These differences in virus neutralization between the two systems, led us to investigate the 
molecular basis for the adaptation of FIV to CrFK cells. Presently nothing is known of the 
relationship between genetic variation of FIV and cell tropism. Information regarding this 
issue may help us to understand the requirements for the infection of different cell types by 
FIV and, at the same time, may reveal the important biological aspects involved in virus 
neutralization in both systems. 

In order to determine whether the adaptation of FIV to CrFK cells is dependent on virus 
entry we have exchanged parts of the surface glycoprotein of FIV molecular clone 19kl 
(which cannot replicate in CrFK cells) with the homologous fragments of the CrFK-adapted 
virus strain FIV-AM6c. We examined these chimeric clones for the potential to replicate in 

feline thymocytes and/or CrFK cells. 

2. Materials and methods 

2.1. Cells and virus 

Peripheral blood mononuclear cells (PBMCs) were derived from heparinized blood of 
a 2-year-old specified pathogen-free (SPF) cat by Ficoll density gradient centrifugation. 
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Thymocytes were derived by homogenizing the thymus of an &week-old SPF cat. PBMCs 
and thymocytes were washed twice and frozen at - 135°C in aliquots. Before use the cells 

were thawed and stimulated with Concanavalin A (Con A) (5 pg ml- ’ ) in CM (RPMI- 
1640 supplemented with penicillin (100 IU ml-‘), streptomycin (100 pg ml-‘), L-glu- 
tamine (2 mM) and Pmercaptoethanol (2 X lo-” M) and 10% fetal calf serum). After 3 
days the cells were washed and cultured in CM supplemented with IL-2 ( 100 IU ml - ’ ) . 

An FIV susceptible clone of the CrFK cell line was obtained from N. Pedersen (Yama- 

moto et al., 1988) and cultured as described previously (Siebelink et al., 1992). 

Replication competent molecular clone 19kl was obtained directly from bone marrow 
cells of a naturally FIV infected cat as described previously (Siebelink et al., 1992). 

FIV was isolated from PBMCs from 11 naturally FIV infected cats. To this end the 

PBMCs of these cats were stimulated with Con A. After 3 days the cells were washed and 
co-cultured with Con A and IL-2 stimulated PBMCs from a SPF cat in CM supplemented 
with IL-2 ( 100 IU ml- ’ ) . The culture supernatant was tested weekly for the presence of 
FIV antigen by ELISA (see below). When FIV antigen was detected subconfluent mono- 
layers of CrFK cells were co-cultivated for 1 week with 10h infected PBMCs. The CrFK 

cells were washed, trypsinized and subcultured at a split ratio of 1:5 weekly. The culture 
supernatants were tested weekly in an FIV antigen ELISA. One of the FIV isolates which 

was adapted to replicate in CrFK cells was designated FIV-AM6c and was used in this 
study. 

2.2. FIV antigen ELBA 

Culture supernatants were tested in an ELISA for the presence of FIV antigen as described 
previously (Siebelink et al., 1989). 

2.3. Generation ofchimeric clones 

The envelope gene of FIV-AM6c was amplified by polymerase chain reaction (PCR) as 
described previously (Siebelink et al., 1993). The env gene was cloned into pUC19 and 
the sequence was determined by the dideoxynucleotide chain termination reaction. The 

nucleotide sequence was compared with the sequence of the envelope gene of molecular 
clone 19kl. To generate chimeric clones four conserved restriction sites were used to 

exchange parts of the envelope gene of 19kl with corresponding parts of FIV-AM6c (Fig. 
I). Three chimeric clones were generated: 19klPBAM6 (19kl which contain the 144 bp 
P@fI-BsaI fragment of FIV-AM6c), 19klBNAM6 ( 19kl which contain the 343 bp BsaI- 
NsiI fragment of FIV-AM6c) and 19klNKAM6 ( 19kl which contain the 248 bp Nsil- 
KpnZ fragment of FIV-AM6c). 

2.4. Transfection 

Five micrograms DNA of the molecular clone 19k 1 and the chimeric clones 19klPBAM6, 
19kl BNAM6 and 19klNKAM6 were transfected into CrFK cells using the cationic lipid 
DOTMA (lipofectin; Bethesda Research Laboratories Inc.) according to the protocol of 
the manufacturer. After 24 h the transfected cells were cocultivated with Con A- and IL-2- 
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Fig. 1. Schematic representation of the envelope genes of molecular clone 19kl and the chimeric clones of 19kl 
which contain the hypervariable regions 3.4 or 5 of the CrFK adapted isolate FlV AM6c. The uppermost bars 
represent the major open reading frames gag, pol and env. The black boxes represent the hypervariable regions in 
the envelope protein. The patterns are corresponding to the parental clones. 

stimulated feline thymocytes. After 3 days the CrFK cells and thymocytes were cultured 
separately. The culture supernatants were monitored for the presence of FIV antigen by 

ELISA weekly. When FIV antigen could be detected, the culture supematant was collected, 
filtered through a 220 nm-pore-size filter and stored in aliquots. 

3. Results 

3.1. Adaptation of FIV to replicate in CrFK cells 

Con A and IL-2 stimulated PBMCs were infected with 11 FIV isolates in separate cultures. 
Within 7 days FIV antigen could be detected in the supematants of all cultures by ELISA 
(Table 1). The PBMCs were then co-cultured with CrFK cells. In four cultures a cytopathic 
effect (cpe) typical for feline syncytium forming virus (FeSFV) was observed in the CrFK 
cell culture (not shown). These cultures were discarded. FIV antigen could only be dem- 
onstrated in the CrFK cell culture infected with FIV-AM4 and FIV-AM6 28 days post 
infection (Table 1). Viral progeny of molecular clone 19kl could not be adapted to replicate 
in CrFK cells using this procedure (not shown). 
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Table 1 

FIV antigen detection in culture supematants of PBMCs and CrFK cells 

Isolate FIV antigen in supematant of 

PBMCs CrFK cells 

FIV-AM1 

FIV-AM2 

FIV-AM3 

FIV-AM4 

FIV-AM5 

FIV-AM6 

FIV-AM7 

FIV-AM8 

FIV-AM9 

FIV-AM10 

FIV-AM19 

+ 
+ 
+ NT 

+ + 

+ 

+ + 

+ NT 

+ _ 

+ NT 

+ NT 

+ _ 

NT, not tested. 

3.2. Transfection of chimeric clones 

Upon transfection with DNA of the molecular clone 19kl and the chimeric clones 
19klPBAM6, 19klBNAM6 and 19klNKAM6 the CrFK cells were cocultivated with thy- 

mocytes. After 72 h the CrFK cells and thymocytes were cultured separately and monitored 
for the presence of FIV antigen in the culture supematant. Within 3 weeks post transfection 
FIV antigen was detected in the supernatant of all the thymocyte cultures (Fig. 2a). Only 

in the culture supematant of the CrFK cells, which were transfected with 19klPBAM6 FIV 
antigen could be detected 52 days post transfection whereas no antigen could be detected 
in the culture supernatant of the CrFKcells, which were transfected with 19kl,19klBNAM6 
or 19klNKAM6 (Fig. 2b). 

The culture supernatant of the CrFK cells, which was found positive in the FIV antigen 

ELISA was collected 52 days post transfection, filtered and designated FIV-19klPBAM6c. 
CrFK cells were infected with FIV-19klPBAM6c or FIV-AM6c and monitored at regular 
intervals for FIV antigen production in the culture supernatant. Within 11 days FIV antigen 

could be detected in the supernatant of both cultures (Fig. 3). These results show that 
chimeric clone 19klPBAM6c is adapted to infect and replicate in CrFK cells with the same 
kinetics as FIV-AM6c. 

3.3. Sequence analysis 

To minimize additional mutations by long-term culture, 4 days after infection with 
19klPBAM6c, CrFK cells were lysed and the FIV envelope gene was amplified by PCR 
and cloned into pUC19. The surface protein was sequenced and compared with the sequence 
of 19kl. The 19klPBAM6c sequence differs at five positions from the 19kl env sequence 
(Fig. 4). Four of these, three situated in HV-3 and one between HV-3 and HV-4, are the 
result of the exchange of the 144 bp PfMI-BsaI fragment of FIV-AM6c. An additional G 
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Fig. 2. FIV antigen production in culture supe.matant of PBMCs (A) and CrFK cells (B) after transfection with 
molecular clone 19kl (0) and the chimeric clones 19klPBAM6 (m), 19klBNAM6 (A) and 19klNKAM6 
(0). 

Days post Infection 

Fig. 3. FIV antigen production in culture supematant of CrFK cells infected with FIV-AM6c (0) and FIV- 
19klPBAM6c (m). 
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Fig. 4. Amino acid sequence of 19kl and 19klPBAM6c from amino acid position 354 to 410. The 144 bp PJMI- 

Bsal fragment and the HV-3 region is indicated at the top. 

to A mutation at nucleotide position 1225 was observed, which causes an amino acid 
substitution mutation of glutamic acid to lysine at position 409. 

4. Discussion 

A limited number of all FIV isolates known to date replicate in CrFK cells. These cells 

are widely used in FIV-neutralization assays which makes elucidation of the molecular 
basis for CrFK-adaptation of FIV an important research goal. This importance is underlined 
by the fact that using these cells predominantly broadly neutralizing antibodies are detected, 

which contrast with the results using T cells, one of the natural target cells for FIV. 

The viral progeny of FIV molecular clone 19kl cannot infect CrFK cells, and we have 
never been able to adapt FIV 19kl to grow in these cells even after prolonged periods of 
cocultivation of CrFK cells with FIV 19kl infected T cells (up to 3 months). Transfer of 
an envelope fragment of the CrFK-adapted FIV-AM6c isolate to 19kl has now allowed us 

to adapt 19kl to CrFK cells after 52 days. This envelope fragment contains the variable V3 
region; no other envelope fragments have yielded similar results. The resulting adapted 

virus is now able to infect CrFK cells and does not demonstrate the 52-day delay observed 
in the adaptation process. It is therefore likely that the fully adapted virus has accumulated 

other mutations, in the envelope gene or elsewhere, that have now converted the phenotype 

of the virus to the fully adapted form. One of such changes,just 3’ of the originally exchanged 
V3 region is discussed below. Preliminary experiments indicate that this single mutation is 

not by itself sufficient for adaptation (in preparation). We currently investigate the contri- 
bution of other envelope regions and of the other viral genes to CrFK adaptation. 

Other lentiviruses, like HIV-l, also display a high degree of genetic variation in the 
envelope gene. Mapping experiments have demonstrated that the highly variable V3 region 
of the HIV- 1 envelope contains an important determinant for cytopathicity and cell tropism, 
as well as the principal neutralization domain (Grimaila et al., 1992). In our experiments 

we could only adapt FIV 19kl to replicate in CrFK cells when we replaced the V3 region 
of 19k 1 with the envelope V3 region of the CrFK-adapted virus FIV-AM6c, suggesting that 

here also the V3 region plays a role in determining cell tropism. This parallel between the 
functional roles of the V3 regions of HIV- 1 and FIV can be extended when we take into 
account that a synthetic V3 peptide of both of these viruses can elicit virus neutralizing 
antibodies. Interestingly in the FIV system these antibodies will only neutralize FIV infec- 
tion of CrFK cells, and not of primary T cells. Understanding the requirements for FIV to 
productively infect CrFK cells may elucidate the basis for virus neutralization in both 
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systems. This information will prove useful in the rational design of virus vaccines that aim 
at inducing high titers of broadly reactive virus neutralizing antibodies, both for FIV and 
for HIV- 1. 

Since we have determined only the sequence of the gene encoding the surface glycopro- 
tein in this study, we cannot exclude that other mechanisms play a role in the acquisition of 
CrFK cell tropism by FIV. Our present studies focus on the potential involvement of the 
gag, pol and regulatory genes of FIV in this phenomenon. 
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