94 research outputs found

    Relative Volume of the Cerebellum in Dolphins and Comparison with Anthropoid Primates

    Get PDF
    According to the ‘developmental constraint hypothesis’ of comparative mammalian neuroanatomy, brain growth follows predictable allometric trends. Therefore, brain structures should scale to the entire brain in the same way across mammals. Evidence for a departure from this pattern for cerebellum volume has recently been reported among the anthropoid primates. One of the mammalian groups that has been neglected in tests of the ‘developmental constraint hypothesis’ is the cetaceans (dolphins, whales, and porpoises). Because many cetaceans possess relative brain sizes in the range of primates comparative tests of the ‘developmental constraint hypothesis’ across these two groups could help to delineate the parameters of this hypothesis. In this paper, we compare relative cerebellum volumes in two cetacean species, the bottlenose dolphin (Tursiops truncatus) and the common dolphin (Delphinus delphis), with published data from anthropoid primates. We found that relative cerebellum size is significantly greater in the two dolphin species than in any of the primates, including humans. These results suggest that there is possibly expansion of brain structures independent of strictly allometric processes

    Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates

    Get PDF
    Significance A longstanding controversy in neuroscience pertains to differences in human prefrontal cortex (PFC) compared with other primate species; specifically, is human PFC disproportionately large? Distinctively human behavioral capacities related to higher cognition and affect presumably arose from evolutionary modifications since humans and great apes diverged from a common ancestor about 6–8 Mya. Accurate determination of regional differences in the amount of cortical gray and subcortical white matter content in humans, great apes, and Old World monkeys can further our understanding of the link between structure and function of the human brain. Using tissue volume analyses, we show a disproportionately large amount of gray and white matter corresponding to PFC in humans compared with nonhuman primates.</jats:p

    Anatomy and Three-Dimensional Reconstructions of the Brain of a Bottlenose Dolphin (Tursiops truncatus) From Magnetic Resonance Images

    Get PDF
    Cetacean (dolphin, whale, and porpoise) brains are among the least studied mammalian brains because of the formidability of collecting and histologically preparing such relatively rare and large specimens. Magnetic resonance imaging offers a means of observing the internal structure of the brain when traditional histological procedures are not practical. Furthermore, internal structures can be analyzed in their precise anatomic positions, which is difficult to accomplish after the spatial distortions often accompanying histological processing. In this study, images of the brain of an adult bottlenose dolphin, Tursiops truncatus, were scanned in the coronal plane at 148 antero-posterior levels. From these scans a computer-generated three-dimensional model was constructed using the programs Voxel-View and VoxelMath (Vital Images, Inc.). This model, wherein details of internal and external morphology are represented in three-dimensional space, was then resectioned in orthogonal planes to produce corresponding series of virtual sections in the horizontal and sagittal planes. Sections in all three planes display the sizes and positions of major neuroanatomical features such as the arrangement of cortical lobes and subcortical structures such as the inferior and superior colliculi, and demonstrate the utility of MRI for neuroanatomical investigations of dolphin brains

    Responses to Conflict and Cooperation in Adolescents with Anxiety and Mood Disorders

    Get PDF
    This study examined patterns of behavioral and emotional responses to conflict and cooperation in adolescents with anxiety/mood disorders and healthy peers. We compared performance on and emotional responses to the Prisoner’s Dilemma (PD) game, an economic exchange task involving conflict and cooperation, between adolescents with anxiety/depressive disorders (A/D) (N=21) and healthy comparisons (n=29). Participants were deceived to believe their co-player (a pre-programmed computer algorithm) was another study participant. A/D adolescents differed significantly from comparisons in patterns of play and emotional response to the game. Specifically, A/D participants responded more cooperatively to cooperative overtures from their co-players; A/D girls also reported more anger toward co-players than did comparison girls. Our findings indicate that A/D adolescents, particularly females, respond distinctively to stressful social interchanges. These findings offer a first step toward elucidating the mechanisms underlying social impairment in youth with internalizing disorders

    Ratios of plasma and salivary testosterone throughout puberty: Production versus bioavailability

    Get PDF
    Because diffusion of testosterone (T) into the salivary gland is thought to be largely limited to the free, biolog

    Genetic mapping and evolutionary analysis of human-expanded cognitive networks

    Get PDF
    Cognitive brain networks such as the default-mode network (DMN), frontoparietal network, and salience network, are key functional networks of the human brain. Here we show that the rapid evolutionary cortical expansion of cognitive networks in the human brain, and most pronounced the DMN, runs parallel with high expression of human-accelerated genes (HAR genes). Using comparative transcriptomics analysis, we present that HAR genes are differentially more expressed in higher-order cognitive networks in humans compared to chimpanzees and macaques and that genes with high expression in the DMN are involved in synapse and dendrite formation. Moreover, HAR and DMN genes show significant associations with individual variations in DMN functional activity, intelligence, sociability, and mental conditions such as schizophrenia and autism. Our results suggest that the expansion of higher-order functional networks subserving increasing cognitive properties has been an important locus of genetic changes in recent human brain evolution

    Mode of Effective Connectivity within a Putative Neural Network Differentiates Moral Cognitions Related to Care and Justice Ethics

    Get PDF
    BACKGROUND: Moral sensitivity refers to the interpretive awareness of moral conflict and can be justice or care oriented. Justice ethics is associated primarily with human rights and the application of moral rules, whereas care ethics is related to human needs and a situational approach involving social emotions. Among the core brain regions involved in moral issue processing are: medial prefrontal cortex, anterior (ACC) and posterior (PCC) cingulate cortex, posterior superior temporal sulcus (pSTS), insula and amygdala. This study sought to inform the long standing debate of whether care and justice moral ethics represent one or two different forms of cognition. METHODOLOGY/PRINCIPAL FINDINGS: Model-free and model-based connectivity analysis were used to identify functional neural networks underlying care and justice ethics for a moral sensitivity task. In addition to modest differences in patterns of associated neural activity, distinct modes of functional and effective connectivity were observed for moral sensitivity for care and justice issues that were modulated by individual variation in moral ability. CONCLUSIONS/SIGNIFICANCE: These results support a neurobiological differentiation between care and justice ethics and suggest that human moral behavior reflects the outcome of integrating opposing rule-based, self-other perspectives, and emotional responses

    Chimpanzee (Pan troglodytes) Precentral Corticospinal System Asymmetry and Handedness: A Diffusion Magnetic Resonance Imaging Study

    Get PDF
    Most humans are right handed, and most humans exhibit left-right asymmetries of the precentral corticospinal system. Recent studies indicate that chimpanzees also show a population-level right-handed bias, although it is less strong than in humans.We used in vivo diffusion-weighted and T1-weighted magnetic resonance imaging (MRI) to study the relationship between the corticospinal tract (CST) and handedness in 36 adult female chimpanzees. Chimpanzees exhibited a hemispheric bias in fractional anisotropy (FA, left>right) and mean diffusivity (MD, right>left) of the CST, and the left CST was centered more posteriorly than the right. Handedness correlated with central sulcus depth, but not with FA or MD.These anatomical results are qualitatively similar to those reported in humans, despite the differences in handedness. The existence of a left>right FA, right>left MD bias in the corticospinal tract that does not correlate with handedness, a result also reported in some human studies, suggests that at least some of the structural asymmetries of the corticospinal system are not exclusively related to laterality of hand preference
    • …
    corecore