3,296 research outputs found

    The epidemiology of clostridium difficile infection in Japan: A systematic review

    Get PDF
    To increase understanding of the epidemiology, risks, consequences and resource utilization of Clostridium difficile infection (CDI) in Japan, a systematic literature review was undertaken of relevant publications from January 2006 to November 2017. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and methods, 55 articles met the criteria for full review. The majority (58%) of studies were from a single site, with the most recent data from 2015. The incidence, reported prevalence and recurrence rate of CDI in Japan were 0.8–4.71/10,000 patient-days, 0.3–5.5/1000 patients and 3.3–27.3%, respectively, and varied according to setting, population, CDI definition and detection method. Most C. difficile isolates associated with CDI in Japan were toxin A+B+, with a low level of C. difficile binary toxin-positive (CDT+) strains (0–6.8% reported across studies). The most common C. difficile PCR ribotypes associated with infection in Japan were smz/018, 002, 052 and 369. Data regarding the impact of CDI on length of hospital stay were limited. Reported all-cause mortality in patients with CDI ranged from 3.4 to 15.1% between 2007 and 2013. Two studies assessed risk factors for CDI recurrence, identifying malignant disease, intensive care unit hospitalization and use of proton pump inhibitors as factors increasing the risk of initial and/or recurrent CDI. No study analyzed initial CDI treatment in relation to recurrence. More comprehensive surveillance and coordinated studies are needed to map trends, understand risk factors, and recognize the extent and impact of CDI in Japanese patients

    Ridinilazole: A novel, narrow-spectrum antimicrobial agent targeting Clostridium (Clostridioides) difficile

    Get PDF
    Clostridium (Clostridioides) difficile infection (CDI) remains an urgent threat to patients in health systems worldwide. Recurrent CDI occurs in up to 30% of cases due to sustained dysbiosis of the gut microbiota which normally protects against CDI. Associated costs of initial and recurrent episodes of CDI impose heavy financial burdens on health systems. Vancomycin and metronidazole have been the mainstay of therapy for CDI for many years; however, these agents continue to cause significant disruption to the gut microbiota and thus carry a high risk of recurrence for CDI patients. Treatment regimens are now turning towards novel narrow spectrum antimicrobial agents which target C. difficile while conserving the commensal gut microbiota, thus significantly reducing risk of recurrence. One such agent, fidaxomicin, has been in therapeutic use for several years and is now recommended as a first-line treatment for CDI, as it is superior to vancomycin in reducing risk of recurrence. Another narrow spectrum agent, ridnilazole, was recently developed and is undergoing evaluation of its potential clinical utility. This review aimed to summarize experimental reports of ridinilazole and assess its potential as a first-line agent for treatment of CDI. Reported results from in vitro assessments, and from hamster models of CDI, show potent activity against C. difficile, non-inferiority to vancomycin for clinical cure and non-susceptibility among most gut commensal bacteria. Phase I and II clinical trials have been completed with ridinilazole showing high tolerability and efficacy in treatment of CDI, and superiority over vancomycin in reducing recurrence of CDI within 30 days of treatment completion. Phase III trials are currently underway, the results of which may prove its potential to reduce recurrent CDI and lessen the heavy health and financial burden C. difficile imposes on patients and healthcare systems

    Genomic delineation of zoonotic origins of Clostridium difficile

    Get PDF
    Clostridium difficile is toxin-producing antimicrobial resistant (AMR) enteropathogen historically associated with diarrhea and pseudomembranous colitis in hospitalized patients. In recent years, there have been dramatic increases in the incidence and severity of C. difficile infection (CDI), and associated morbidity and mortality, in both healthcare and community settings. C. difficile is an ancient and diverse species that displays a sympatric lifestyle, establishing itself in a range of ecological niches external to the healthcare system. These sources/reservoirs include food, water, soil, and over a dozen animal species, in particular, livestock such as pigs and cattle. In a manner analogous to human infection, excessive antimicrobial exposure, particularly to cephalosporins, is driving the expansion of C. difficile in livestock populations worldwide. Subsequent spore contamination of meat, vegetables grown in soil containing animal feces, agricultural by-products such as compost and manure, and the environment in general (households, lawns, and public spaces) is contributing to a persistent community source/reservoir of C. difficile and the insidious rise of CDI in the community. The whole-genome sequencing era continues to redefine our view of this complex pathogen. The application of high-resolution microbial genomics in a One Health framework (encompassing clinical, veterinary, and environment derived datasets) is the optimal paradigm for advancing our understanding of CDI in humans and animals. This approach has begun to yield critical insights into the genetic diversity, evolution, AMR, and zoonotic potential of C. difficile. In Europe, North America, and Australia, microevolutionary analysis of the C. difficile core genome shows strains common to humans and animals (livestock or companion animals) do not form distinct populations but share a recent evolutionary history. Moreover, for C. difficile sequence type 11 and PCR ribotypes 078 and 014, major lineages of One Health importance, this approach has substantiated inter-species clonal transmission between animals and humans. These findings indicate either a zoonosis or anthroponosis. Moreover, they challenge the existing paradigm and the long-held misconception that CDI is primarily a healthcare-associated infection. In this article, evolutionary, and zoonotic aspects of CDI are discussed, including the anthropomorphic factors that contribute to the spread of C. difficile from the farm to the community

    Phage ϕC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains

    Get PDF
    UNLABELLED: In this work, we show that Clostridium difficile phage ϕC2 transduces erm(B), which confers erythromycin resistance, from a donor to a recipient strain at a frequency of 10(-6) per PFU. The transductants were lysogenic for ϕC2 and contained the erm(B) gene in a novel transposon, Tn6215. This element is 13,008 bp in length and contains 17 putative open reading frames (ORFs). It could also be transferred at a lower frequency by filter mating. IMPORTANCE: Clostridium difficile is a major human pathogen that causes diarrhea that can be persistent and difficult to resolve using antibiotics. C. difficile is potentially zoonotic and has been detected in animals, food, and environmental samples. C. difficile genomes contain large portions of horizontally acquired genetic elements. The conjugative elements have been reasonably well studied, but transduction has not yet been demonstrated. Here, we show for the first time transduction as a mechanism for the transfer of a novel genetic element in C. difficile. Transduction may also be a useful tool for the genetic manipulation of C. difficile.Peer reviewe

    Microbiological evaluation of the ability of the DEKO-190 Washer/Disinfector to remove Clostridium difficile spores from bedpan surfaces

    Get PDF
    BACKGROUND: Clostridium difficile is a major nosocomial pathogen causing mild diarrhoea to life-threatening pseudomembranous colitis, and its spores frequently contaminate hospital environments and equipment. Washer/Disinfectors (WDs) are commonly used to clean and decontaminate soiled equipment in health care facilities. This study aimed to evaluate the effectiveness of the DEKO-190 WD in removing C. difficile spores from bedpans. METHODS: Plastic carriers were inoculated with suspensions of C. difficile spores in autoclaved (sterile) human faeces. The carriers were then taped to a sterile plastic bedpan which was subjected to short, long or intensive wash cycles in the WD using one of two test detergents: Formula A (generic) and Formula B (highly alkaline). Mean log10 reductions in spores were calculated for each wash cycle. RESULTS: Mean log10 reductions were 3.21(SEM ± 0.20) and 2.82 (±0.13) for Formula A and B, respectively, for the short cycle. The mean log10 reductions using the long wash cycle were 3.65 (±0.44) using Formula A and 5.30 (±0.43) using Formula B, while log10 reductions were 3.37 (±0.58) (Formula A) and 4.64 (±0.47) (Formula B) for the intensive cycle. Washing with the DEKO-190 significantly reduced spore concentrations on carrier surfaces on a bedpan. Spore counts were most effectively reduced when carriers were washed on a long or intensive wash cycle using an alkaline detergent

    Complete genome assemblies of three highly prevalent, toxigenic clostridioides difficile strains causing health care-associated infections in Australia

    Get PDF
    Clostridioides difficile infection (CDI) is the leading cause of life-threatening health care-related gastrointestinal illness worldwide. Phylogenetically appropriate closed reference genomes are essential for studies of C. difficile transmission and evolution. Here, we provide high-quality complete hybrid genome assemblies for the three most prevalent C. difficile strains causing CDI in Australia

    A species-wide genetic atlas of antimicrobial resistance in clostridioides difficile

    Get PDF
    Antimicrobial resistance (AMR) plays an important role in the pathogenesis and spread of Clostridioides difficile infection (CDI), the leading healthcare-related gastrointestinal infection in the world. An association between AMR and CDI outbreaks is well documented, however, data is limited to a few ‘epidemic’ strains in specific geographical regions. Here, through detailed analysis of 10330 publicly-available C. difficile genomes from strains isolated worldwide (spanning 270 multilocus sequence types (STs) across all known evolu-tionary clades), this study provides the first species-wide snapshot of AMR genomic epidemiology in C. difficile. Of the 10330 C. difficile genomes, 4532 (43.9%) in 89 STs across clades 1–5 carried at least one genotypic AMR determinant, with 901 genomes (8.7%) carrying AMR determinants for three or more antimicrobial classes (multidrug-resistant, MDR). No AMR genotype was identified in any strains belonging to the cryptic clades. C. difficile from Australia/New Zealand had the lowest AMR prevalence compared to strains from Asia, Europe and North America (P \u3c 0.0001). Based on the phylogenetic clade, AMR prevalence was higher in clades 2 (84.3%), 4 (81.5%) and 5 (64.8%) compared to other clades (collectively 26.9%) (P \u3c 0.0001). MDR prevalence was highest in clade 4 (61.6%) which was over three times higher than in clade 2, the clade with the second-highest MDR prevalence (18.3%). There was a strong association between specific AMR determinants and three major epidemic C. difficile STs: ST1 (clade 2) with fluoroquinolone resistance (mainly T82I substitution in GyrA) (P \u3c 0.0001), ST11 (clade 5) with tetracycline resistance (various tet-family genes) (P \u3c 0.0001) and ST37 (clade 4) with macrolide-lincosamide-streptogramin B (MLSB ) resistance (mainly ermB) (P \u3c 0.0001) and MDR (P \u3c 0.0001). A novel and previously overlooked tetM-positive transposon designated Tn6944 was identified, predominantly among clade 2 strains. This study provides a comprehensive review of AMR in the global C. difficile population which may aid in the early detection of drug-resistant C. difficile strains, and prevention of their dissemination worldwide

    Spore-forming Clostridium (Clostridioides) difficile in wastewater treatment plants in Western Australia

    Get PDF
    There is growing evidence that shows Clostridium (Clostridioides) difficile is a pathogen of One Health importance with a complex dissemination pathway involving animals, humans, and the environment. Thus, environmental discharge and agricultural recycling of human and animal waste have been suspected as factors behind the dissemination of Clostridium difficile in the community. Here, the presence of C. difficile in 12 wastewater treatment plants (WWTPs) in Western Australia was investigated. Overall, C. difficile was found in 90.5 % (114/126) of raw sewage influent, 48.1 % (50/104) of treated effluent, 40 % (2/5) of reclaimed irrigation water, 100 % (38/38) of untreated biosolids, 95.2 % (20/21) of anaerobically digested biosolids, and 72.7 % (8/11) of lime-amended biosolids. Over half of the isolates (55.3 % [157/284]) were toxigenic, and 97 C. difficile ribotypes (RTs) were identified, with RT014/020 the most common (14.8 % [42/284]). Thirteen C. difficile isolates with the toxin gene profile A1 B1 CDT1 (positive for genes coding for toxins A and B and the binary C. difficile transferase toxin [CDT]) were found, including the hypervirulent RT078 strain. Resistance to the antimicrobials fidaxomicin, vancomycin, metronidazole, rifaximin, amoxicillin-clavulanate, meropenem, and moxifloxacin was uncommon; however, resistance to clindamycin, erythromycin, and tetracycline was relatively frequent at 56.7 % (161/284), 14.4 % (41/284), and 13.7 % (39/284), respectively. This study revealed that toxigenic C. difficile was commonly encountered in WWTPs and being released into the environment. This raises concern about the possible spillover of C. difficile into animal and/or human populations via land receiving the treated waste. In Western Australia, stringent measures are in place to mitigate the health and environmental risk of recycling human waste; however, further studies are needed to elucidate the public health significance of C. difficile surviving the treatment processes at WWTPs. IMPORTANCE: Clostridium difficile infection (CDI) is a leading cause of antimicrobial-associated diarrhea in health care facilities. Extended hospital stays and recurrences increase the cost of treatment and morbidity and mortality. Community-associated CDI (CA-CDI) cases, with no history of antimicrobial use or exposure to health care settings, are increasing. The isolation of clinically important C. difficile strains from animals, rivers, soil, meat, vegetables, compost, treated wastewater, and biosolids has been reported. The objective of this study was to characterize C. difficile in wastewater treatment plants (WWTPs) in Australia. We found that C. difficile can survive the treatment processes of WWTPs, and toxigenic C. difficile was being released into the environment, becoming a potential source/reservoir for CA-CDI

    Genome analysis of Clostridium difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission

    Get PDF
    Clostridium difficile PCR ribotype (RT) 014 is well-established in both human and porcine populations in Australia, raising the possibility that C. difficile infection (CDI) may have a zoonotic or foodborne etiology. Here, whole genome sequencing and high-resolution core genome phylogenetics were performed on a contemporaneous collection of 40 Australian RT014 isolates of human and porcine origin. Phylogenies based on MLST (7 loci, STs 2, 13, and 49) and core orthologous genes (1260 loci) showed clustering of human and porcine strains indicative of very recent shared ancestry. Core genome single nucleotide variant (SNV) analysis found 42 % of human strains showed a clonal relationship (separated by ≤ 2 SNVs in their core genome) with one or more porcine strains, consistent with recent inter-host transmission. Clones were spread over a vast geographic area with 50 % of the human cases occurring without recent healthcare exposure. These findings suggest a persistent community reservoir with long-range dissemination, potentially due to agricultural recycling of piggery effluent. We also provide the first pan-genome analysis for this lineage, characterizing its resistome, prophage content, and in silico virulence potential. The RT014 is defined by a large “open” pan-genome (7587 genes) comprising a core genome of 2296 genes (30.3 % of the total gene repertoire) and an accessory genome of 5291 genes. Antimicrobial resistance genotypes and phenotypes varied across host populations and ST lineages and were characterized by resistance to tetracycline [tetM, tetA(P), tetB(P) and tetW], clindamycin/erythromycin (ermB), and aminoglycosides (aph3-III-Sat4A-ant6-Ia). Resistance was mediated by clinically important mobile genetic elements, most notably Tn6194 (harboring ermB) and a novel variant of Tn5397 (harboring tetM). Numerous clinically important prophages (Siphoviridae and Myoviridae) were identified as well as an uncommon accessory gene regulator locus (agr3). Conservation in the pathogenicity locus and S-layer correlated with ST affiliation, further extending the concept of clonal C. difficile lineages. This study provides novel insights on the genetic variability and strain relatedness of C. difficile RT014, a lineage of emerging One Health importance. Ongoing molecular and genomic surveillance of strains in humans, animals, food, and the environment is imperative to identify opportunities to reduce the overall CDI burden
    corecore