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Abstract

Clostridium (Clostridioides) difficile infection (CDI) remains an urgent threat to

patients in health systems worldwide. Recurrent CDI occurs in up to 30% of

cases due to sustained dysbiosis of the gut microbiota which normally protects

against CDI. Associated costs of initial and recurrent episodes of CDI impose

heavy financial burdens on health systems. Vancomycin and metronidazole

have been the mainstay of therapy for CDI for many years; however, these

agents continue to cause significant disruption to the gut microbiota and thus

carry a high risk of recurrence for CDI patients. Treatment regimens are now

turning towards novel narrow spectrum antimicrobial agents which target C.

difficile while conserving the commensal gut microbiota, thus significantly

reducing risk of recurrence. One such agent, fidaxomicin, has been in

therapeutic use for several years and is now recommended as a first-line

treatment for CDI, as it is superior to vancomycin in reducing risk of

recurrence. Another narrow spectrum agent, ridnilazole, was recently developed

and is undergoing evaluation of its potential clinical utility. This review aimed

to summarize experimental reports of ridinilazole and assess its potential as a

first-line agent for treatment of CDI. Reported results from in vitro

assessments, and from hamster models of CDI, show potent activity against C.

difficile, non-inferiority to vancomycin for clinical cure and non-susceptibility

among most gut commensal bacteria. Phase I and II clinical trials have been

completed with ridinilazole showing high tolerability and efficacy in treatment

of CDI, and superiority over vancomycin in reducing recurrence of CDI within

30 days of treatment completion. Phase III trials are currently underway, the

results of which may prove its potential to reduce recurrent CDI and lessen the

heavy health and financial burden C. difficile imposes on patients and

healthcare systems.

Background

Worldwide, antimicrobial-resistant bacteria currently cause

700 000 deaths per year, and it is predicted that without

an intervention 10 million people will die of infections

caused by antimicrobial-resistant bacteria every year by

2050 (O’Neill, 2014). Clostridium (also called Clostrid-

ioides) difficile is the most common antimicrobial-resistant

bacterium causing healthcare-associated infections in high-

income countries (Miller et al. 2011), listed by the US Cen-

ters for Disease Control as an ‘urgent’ antimicrobial resis-

tance (AMR) threat (CDC, 2019). First described in 1978

as the causative agent of pseudomembranous colitis (Bar-

tlett et al. 1978), C. difficile causes toxin-mediated diar-

rhoeal disease which can progress to irreversible damage to

the colon, or even death. C. difficile infection (CDI) most

frequently occurs following antimicrobial use which dis-

turbs the gut microbiome which normally protects against

526 Letters in Applied Microbiology 75, 526--536 © 2022 The Authors. Letters in Applied Microbiology published by John Wiley & Sons Ltd

?on behalf of Society for Applied Microbiology

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and

distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Letters in Applied Microbiology ISSN 0266-8254

https://orcid.org/0000-0001-6754-9290
https://orcid.org/0000-0001-6754-9290
https://orcid.org/0000-0001-6754-9290
https://orcid.org/0000-0002-1351-3740
https://orcid.org/0000-0002-1351-3740
https://orcid.org/0000-0002-1351-3740
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. difficile (Martin et al. 2016). Risk factors for CDI

include advanced age, antimicrobial use and prolonged

hospital stay (Martin et al. 2016).

The reported incidence of CDI varies widely and is

heavily influenced by testing practices, antimicrobial pre-

scribing policies and differing infection control

approaches around the world. In general, CDI rates have

increased significantly over the past 20 years (Slimings

et al. 2014; Guh et al. 2020). Major outbreaks occurred in

the early 2000s, attributed to a particular strain of C. dif-

ficile, ribotype (RT) 027/PFGE type NAP1/ REA group BI,

which had developed fluoroquinolone resistance (He

et al. 2013). This enhanced resistance profile appears to

have driven spread worldwide.

Currently, C. difficile causes an estimated >460 000 cases

per year in the USA (Guh et al. 2020), and costs USD1 bil-

lion to the health system (CDC, 2019). Incidence rates are

aggregated at 7 cases per 10,000 patient days (PD) in Eur-

ope (Davies et al. 2014) and 4�6 per 10,000 PD in Australia

(ACSQHC, 2020). C. difficile RT 027 remains an important

strain in North America; however, many other strains,

some of which also exhibit enhanced antimicrobial resis-

tance, predominate in certain regions of the world, includ-

ing RTs 012, 014/020, 017, 018, 078, 106, 356 and 369

(Tickler et al. 2019; Freeman et al. 2020; Lew et al. 2020).

C. difficile is ubiquitous among animals, most fre-

quently asymptomatically colonizing infant animals, but

also causing disease in several species including pigs and

horses (Weese, 2020). The widespread use of antimicro-

bials in animal husbandry appears to drive high rates of

colonization among production animals including pigs

and cows. Increasing evidence is showing likely zoonotic

transmission of C. difficile via contact with animals and

use of animal manure as fertilizer in agriculture and hor-

ticulture (Knight et al. 2016; Lim et al. 2021).

Antimicrobial exposure presents the highest risk for

development of CDI. The greatest relative risk for CDI is

associated with clindamycin; however, notably, the greatest

attributable risk is presented by cephalosporins (O’Grady

et al. 2021). A meta-analysis of studies identified that car-

bapenems and third generation cephalosporins are associ-

ated with the highest risk for CDI, followed by

clindamycin, fluoroquinolones and ß-lactamase inhibitor–
penicillin combinations (Slimings and Riley, 2021). This

aim of this review is to compile reported evidence of the

activity of ridinilazole and examine its potential for use as

a first-line agent for treatment of CDI.

Pathogenesis of CDI

Several toxins are produced by C. difficile in various com-

binations. Toxin A (enterotoxin) and toxin B (cytotoxin)

are frequently found together, their encoding genes (tcdA

and tcdB) carried on the Pathogenicity Locus (PaLoc).

Some strains have partial or complete deletions in the

PaLoc resulting in variant strains, most commonly toxin

A-negative and toxin B-positive strains, which still elicit

disease. Strains carrying tcdA only are rare. Toxins A and B

glucosylate and inactivate epithelial cell GTPases including

Rac, Rho and Cdc42, altering cell signalling that induces

disruption of actin cytoskeleton and inducing apoptosis. A

third toxin, C. difficile binary toxin (CDT), has been linked

with emergent ‘hypervirulent’ C. difficile strains including

RT 027, 078 and 244 (Lim et al. 2014). Its mode of action

is not well understood, but its presence is associated with

more severe disease (Gerding et al. 2014), and some rare

strains which produce CDT only may still be capable of

causing CDI (Androga et al. 2015; Eckert et al. 2015).

Spore production is another key virulence factor for C.

difficile, with ‘hypervirulent’ strains possibly associated with

increased sporulation rates (Akerlund et al. 2008). These

spores give C. difficile the ability to withstand extreme envi-

ronmental conditions including UV light, high tempera-

tures and dessication, and their resistance to many

disinfectants, including alcohol-based cleaning agents. Dor-

mant spores thus survive for long periods of time in both

healthcare settings and the community. Spores germinate in

the gut when they encounter certain bile acids, and an eco-

logical niche is provided by a disrupted gut microbiota.

Conjugated and unconjugated bile acids, taurocholate and

cholate, respectively, promote germination of C. difficile

spores, while secondary bile acids (including lithocholate

and deoxycholate) usually inhibit C. difficile germination

(Qian et al. 2020). Different C. difficile strains appear to

show varying growth responses to bile acids.

The gut microbiota contributes to colonization resis-

tance against C. difficile through direct and indirect mech-

anisms including nutrient metabolism, modulation of bile

salts, production of antimicrobial peptides and modula-

tion of the host immune system. Antimicrobial use dis-

rupts the diversity and volume of the gut microbiota.

Resulting dysbiosis of the microbiota leads to functional

changes in the host gut environment that reduce colo-

nization resistance, and render the host susceptible to

CDI, with the greatest risk of CDI occurring during and

immediately after antimicrobial use (Figure 1). Coloniza-

tion resistance has been associated with certain taxonomic

groups of bacteria, particularly firmicutes, Bacteroides

fragilis and Bifidobacterium longum (Vickers et al. 2016).

It is likely that various diverse microbiota compositions

can exhibit colonization resistance.

AMR in C. difficile

Another key to the virulence and success of C. difficile is

AMR. C. difficile possesses many mechanisms for AMR,
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some of which are intrinsic and some acquired. These

include biofilm formation, mobile genetic elements (e.g.

transposons including Tn5398 carrying ermB conferring

resistance to erythromycin), and alterations in metabolic

pathways or antimicrobial targets (e.g. rpoB conferring

resistance to rifamycins) (Spigaglia et al. 2018; O’Grady

et al. 2021). Fluoroquinolone resistance (primarily to

ciprofloxacin, and to a lesser extent against later genera-

tion fluoroquinolones) is conferred by mutations in the

quinolone-resistance determining region of the DNA gyr-

ase subunits GyrA and GyrB (O’Grady et al. 2021). The

most common mutation is the substitution of Thr82Ile in

GyrA. This mutation is likely responsible for the success

of both the FQR1 and FQR2 lineages of RT 027, both of

which acquired an altered gyrA gene independently (He

et al. 2013). Cephalosporin resistance is intrinsic in C. dif-

ficile and is mediated via production of class D ß-

lactamases (Toth et al. 2018). Further mechanisms of

cephalosporin resistance may involve antibiotic-degrading

enzymes and modification of target sites, and may be

strain-specific (Spigaglia et al. 2018).

AMR rates for C. difficile vary widely, depending on

strain and antimicrobial usage in different regions. Most

C. difficile clinical strains show resistance to early genera-

tion fluoroquinolones and cephalosporins, while resis-

tance to clindamycin and erythromycin is variable.

Resistance to vancomycin, metronidazole, fidaxomicin,

meropenem or piperacillin/tazobactam is rarely reported,

but strains of RT 027 with reduced susceptibility to

metronidazole and vancomycin have been found, particu-

larly in Israel (Adler et al. 2015). Reduced susceptibility

to metronidazole has also been reported in RT 078 and

RT 126 strains (Spigaglia et al. 2018).

A recent meta-analysis of 111 studies of antimicrobial

susceptibilities in C. difficile published between 1992 and

2019 has identified weighted pooled resistance (WPR) to

metronidazole and vancomycin as 1% for breakpoint

>2 µg mL�1. High WPRs were found for fluoro-

quinolones: 95% for ciprofloxacin and 32% for moxi-

floxacin. Among other high-risk antimicrobials for

development of CDI, clindamycin had a WPR of 59%

and ceftriaxone had WPR of 47%. For fidaxomicin, the

WPR was 0�08% (one isolate reported) (Sholeh et al.

2020).

Recurrent CDI

Recurrent CDI is a major issue facing CDI patients and

treating physicians, defined as a recurrence of CDI symp-

toms within 8 weeks of resolution of a previous episode

(McDonald et al. 2007). Recurrence results from relapse

of initial CDI infection or reinfection with the same or a

new strain of C. difficile and arises from slow recovery of

the gut microbiota following use of antimicrobials,

including vancomycin and metronidazole (Figure 1).

Recurrent CDI is associated with increased morbidity and

Figure 1 Interplay between antimicrobials, the gut microbiota and C. difficile. Antimicrobial treatment diminishes the normal gut microbiota,

increasing the risk of CDI if exposed to C. difficile spores. Treatment with broad spectrum antimicrobials such as vancomycin or metronidazole fur-

ther depletes the gut microbiota and increases risk of recurrent CDI. Treatment with narrow spectrum antimicrobials such as fidaxomicin or ridini-

lazole preserves and facilitates recovery of the gut microbiota, reducing risk of recurrence
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mortality, is difficult to resolve and thus poses a consider-

able health and financial burden to patients and health

systems. Each episode of recurrence is also associated with

increased risk of further recurrent episodes. Approxi-

mately one third of recurrent CDI cases require re-

admission to hospital (Sheitoyan-Pesant et al. 2016) and

additional costs of USD10 000-11 000 per case are attrib-

uted to recurrent CDI in the USA (Dubberke et al. 2014;

Zhang et al. 2018). Risk factors for recurrent CDI include

gastric acid suppression due to proton pump inhibitor

use, immunosuppression, older age, previous CDI episode

and infection with certain strains of C. difficile.

Treatment of initial and recurrent episodes of CDI

Therapies for CDI ideally should target C. difficile while

conserving the commensal gut microbiota. This would

maintain a healthy microbiota and restore colonization

resistance during treatment; however, narrow-spectrum

therapies of this nature have not been developed until rela-

tively recently. In mild cases of CDI, discontinuation of

infection-eliciting antimicrobials can resolve the infection,

but in many cases broad-spectrum agents have been admin-

istered for initial episodes of CDI. For many years, guideli-

nes recommended oral metronidazole for non-severe

disease, and oral vancomycin for severe CDI cases due to

apparent superiority over metronidazole (Debast et al.

2014). Both vancomycin and metronidazole promote gut

dysbiosis and thus are associated with high risk of recurrent

CDI (up to 30% of patients) (Johnson et al. 2021).

Later iterations of guidelines recommended vancomycin

over metronidazole (McDonald et al. 2018; Ooijevaar et al.

2018), due to findings from multi-centre randomized con-

trolled trials (RCTs) that metronidazole was inferior to

vancomycin in the treatment of all CDI (non-severe and

severe combined) (Johnson et al. 2014). Metronidazole is

no longer recommended as first-line treatment for either

non-severe or severe CDI by the Infectious Diseases Society

of America (IDSA) and the European Society for Clinical

Microbiology and Infectious Diseases (ESCMID); both rec-

ommend fidaxomicin before vancomycin for initial epi-

sodes of CDI, subject to availability and feasibility

(Johnson et al. 2021; van Prehn et al. 2021).

Fidaxomicin was approved for clinical use in 2011 and

has shown potent activity against C. difficile while pre-

serving the commensal gut microbiota. This narrow spec-

trum of activity results in superiority over vancomycin

with regard to recurrence/sustained clinical response up

to 25 days after treatment completion (Louie et al. 2011;

Cornely et al. 2012); however, it has been reported as

inferior to vancomycin for clinical response to RT 027

infections (Louie et al. 2011; Cornely et al. 2012). Its high

cost (USD1 767 for 10 day treatment) initially raised

concerns about its benefit compared with treatment with

vancomycin (USD14) or metronidazole (USD8), but mul-

tiple cost effectiveness analyses demonstrated that it is

cost effective due to high cure rates and prevention of

recurrent episodes, reducing re-admissions to hospital

(Rajasingham et al. 2020; Jiang et al. 2021).

For recurrent CDI, fidaxomicin is recommended (stan-

dard or extended-pulsed regimen) and vancomycin (ta-

pered or pulsed regimen) is listed as an acceptable

alternative. For multiply recurrent cases, vancomycin is

recommended, followed by rifaximin and faecal micro-

biota transplant (FMT) (Johnson et al. 2021). FMT

involves preparation of stool from healthy donors and

introduction to the gut of recurrent CDI patients via vari-

ous routes (capsule vs duodenal vs colonic). FMT has

high cure rates, even in cases of fulminant CDI (>76%)

(Tariq et al. 2019). Despite high cure rates, long-term

health effects are still not well-understood and costs are

high (USD 1 500–2 000) (Rajasingham et al. 2020).

Bezlotoxumab, a human monoclonal antibody which

targets toxin B, also significantly decreases recurrence

rates of CDI (Wilcox et al. 2017). Bezlotoxumab is now

recommended as a co-intervention along with antimicro-

bials in cases of recurrent CDI in the USA, particularly

for certain patients considered at high risk for recurrent

CDI (age ≥65 years, immunocompromised or severe

CDI) (Johnson et al. 2021). Some economic analyses

again favour use of bezlotoxumab despite its high cost

due to its high rates of clinical cure (Lam et al. 2018),

although the recently released National Institute for

Health and Care Excellence recommendations on treat-

ment do not endorse the use of bezlotoxumab (NICE,

2021).

Ridinilazole

Ridinilazole [2,2’bis(4-pyridyl) 3H,3’-H5,5-

bibenzimidazole (Figure 2), previously known as

SMT19969] (Summit Therapeutics Inc, Oxfordshire, Uni-

ted Kingdom), is a novel non-absorbable narrow-spectrum

antimicrobial agent which is currently under clinical evalu-

ation for treatment of CDI. It has demonstrated potent

activity against multiple strains of C. difficile, including

RT027, both in vitro and in vivo, and in gut models (Weiss

et al. 2014; Baines et al. 2015). It does not appear to have a

typical mode of action compared with many antimicrobial

classes, such as inhibition of RNA or DNA or cell wall syn-

thesis.

Mode of action of ridinilazole

The mechanism of action of ridinilazole is not fully

understood, but investigations using confocal microscopy
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and fluorescent labelling identified disruption of septum

formation with filamentous phenotype with replicated

nucleoids along the length of the cell, which suggests that

ridinilazole impairs cell division of C. difficile (Basseres

et al. 2016). Production of toxin A by impaired cells was

reduced by 91% and of toxin B by 100%, which in turn

elicited a reduction of 74% in the inflammatory response

of human intestinal cells (Caco-2). Thus, its activity

against C. difficile appears to be potent and effectively

reduces toxin production, thereby attenuating the host

inflammatory response (Basseres et al. 2016).

Activity of ridinilazole against C. difficile and gut
commensals

Few in vitro studies measuring the activity of ridinilazole

against C. difficile have been reported to date, but MIC

appears to be low, ranging from 0�015 to 0�5 µg mL�1.

Reported MIC50 values range from 0�06 to 0�25 µg mL�1

and MIC90 values range from 0�125 to 0�25 µg mL�1

(Table 1). Ridinilazole is active against C. difficile at con-

centrations generally comparable to fidaxomicin (MIC

range 0�004 to 1 µg mL�1) (Table 1). Strain-specific

MICs have been reported for several of the predominant

C. difficile strains in the world, many of which show

multi-resistance to ≥3 antimicrobials (Table 2). For C.

difficile RT 027, MICs were 1 dilution lower for ridinila-

zole compared with fidaxomicin (MIC50 and MIC90

0�25 µg mL�1 vs 0�5 µg mL�1) in a study by Goldstein

et al., however, Freeman et al. identified lower MIC50

(0�06 µg mL�1 vs 0�25 µg mL�1) for fidaxomicin com-

pared with ridinilazole for four RT 027 strains collected

across Europe (Table 2). The lowest MICs for ridinilazole

were recorded for RT 001 strains from Europe (MIC50

0�06 µg mL�1) which also had low MIC50 for fidaxomicin

(0�008 µg mL�1).

Goldstein et al. examined the activity of ridinilazole

against 350 Gram-positive and Gram-negative aerobic

and anaerobic commensal bacteria. Like fidaxomicin,

ridinilazole was less active against Gram-negative anaer-

obes, particularly B. fragilis, than vancomycin and

metronidazole. It also had low activity against other

Gram-positive anaerobes including Bifidobacteria species,

Eggerthella lenta, Finegoldia magna and Peptostreptococcus

anaerobius. Clostridium innocuum was susceptible to

ridinilazole (MIC90 1 µg mL�1) while Clostridium ramo-

sum and Clostridium perfringens were non-susceptible.

Gram-positive aerobes including Staphylococcus aureus,

Enterococcus faecalis, Enterococcus faecium and streptococci

were also non-susceptible to ridinilazole, demonstrating

its potential as a clinical therapeutic that preserves the

host commensal microbiota (Goldstein et al. 2013).

Another study from Goldstein et al. evaluated the activ-

ity of ridinilazole against 162 strains of Clostridium repre-

senting clusters I to XIX, and 13 other Clostridium species

typically found among the commensal gut microbiota.

MICs ranged from 0�06 to >512 µg mL�1, but predomi-

nantly showed a narrow spectrum of activity. Resistance

was not related to cluster or species, occurring again in

C. ramosum (10/10 strains) and C. perfringens (9/11

strains) as well as Clostridium rectum (3/3), Clostridium

sardiniense (1/1), Clostridium paraputrificum (6/8),

Clostridium sporogenes (3/5), Clostridium colicanis (1/2),

Clostridium glycolicum (2/5), Clostridium scindens (1/5),

Clostridium sordellii (1/6) and Clostridium cadaveris (2/6).

Several species with MIC ≥ 32 µg mL�1 for fidaxomicin

were also recorded, among different strains compared

with those exhibiting resistance to ridinilazole (Goldstein

et al. 2014).

In vivo studies

In a standard clindamycin-induced male golden Syrian

hamster model of CDI, ridinilazole administered orally

once daily for 5 days demonstrated full protection on

dosing days up to day 12, and 70% survived to day 21

when infected with epidemic C. difficile (strain VA5/

UNT106-1, BI/NAP1/RT 027), compared with 60% sur-

vival for vancomycin-treated hamsters. Survival rates of

ridinilazole-treated hamsters ranged from 80 to 95% for

non-epidemic C. difficile (strain VA11/UNT103-1, REA

type J). Apparent relapse also occurred earlier among the

Figure 2 Chemical structure of ridinilazole [2,2’bis(4-pyridyl) 3H,3’-H5,5-bibenzimidazole] (Weiss et al. 2014)
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vancomycin treatment group, occurring on day 11 with

mortality. Toxin was not detected from surviving ham-

sters treated with ridinilazole. Plasma sample concentra-

tions of ridinilazole were below the limit of quantification

(25 ng mL�1) at all time points demonstrating low

bioavailability of the compound, while caecal concentra-

tions were significantly above the MIC (96–172 µg mL�1)

(Weiss et al. 2014).

In another hamster study, animals infected with either

C. difficile BI1 (RT 027) or C. difficile 630 (RT 012) were

then treated with ridinilazole, fidaxomicin or vancomycin

for 5 days. Treatment with all three agents resulted in

100% survival during the treatment period for hamsters

infected with C. difficile BI1. Mortality was recorded on

day 11 in animals treated with vancomycin, with 10%

survival occurring by day 28. Similar results were found

for ridinilazole and vancomycin when infected with C.

difficile 630; respective day 28 survival rates were 80–
100% and 0% (Sattar et al. 2015).

Clinical trials

In a phase I, double-blind, randomized placebo-

controlled trial ridinilazole showed high tolerance and

safety among 56 healthy human male volunteers, with

88% of adverse events limited to self-limiting

gastrointestinal upsets. Pharmacokinetic analysis showed

little systemic absorption with levels in plasma generally

below the limit of quantification for fasted individuals

and low concentrations when the drug was administered

with food. Ridinilazole concentration in faeces increased

with increasing dose, but no notable metabolites were

detected. There was also minimal disruption to commen-

sal gut microbiota other than total clostridia (among

which a >3 log10 reduction was recorded) with single or

multiple doses up to 2 000 mg (Vickers et al. 2015).

Based on the positive findings from phase I, phase II

trials of ridinilazole were completed in 2015. In a ran-

domized, double-blind active-controlled study of 100

patients, 10 days treatment with ridinilazole showed non-

inferiority in comparison with 10 days treatment with

vancomycin. A treatment difference of 21�1% (90% CI

3�1–39�1, P = 0�0004) was found, where 66�7% of patients

treated with ridinilazole vs 42�4% of those treated with

vancomycin had a sustained clinical response defined as

clinical cure (≤3 unformed bowel movements within a

24 h period) at the end of treatment with no recurrence

within 30 days. Ridinilazole was also well tolerated with

adverse events reported in 82% of the ridinilazole group

compared with 80% of the vancomycin group, none of

which required discontinuation of the trial. Minimal sys-

temic exposure was recorded for ridinilazole-treated

Table 1 Reported activity of ridinilazole, fidaxomicin, vancomycin and metronidazole against C. difficile

Isolates (n) Activity (µg mL�1) Ridinilazole Fidaxomicin Vancomycin Metronidazole Reference

50 MIC50 0�25 0�25 1 0�5 Goldstein et al. (2013)

MIC90 0�25 0�5 4 2

Range 0�125–0�5 0�06–1 1–8 0�25–8
82 MIC50 0�125 0�03 1 2 Corbett et al. (2015)

MIC90 0�125 0�06 2 8

Range 0�06–0�125 0�008–0�125 0�5–4 0�125–8
107 MIC50 0�03 0�06 1 0�5 Freeman et al. (2016)

MIC90 0�125 0�125 2 2

Range 0�015–0�5 0�004–0�125 0�5–8 <0�125–2
44* MIC50 0�12 0�12 1 0�5 Snydman et al. (2018)

MIC90 0�25 0�5 2 2

Range 0�06–0�5 0�06–1 1–4 0�12–4
3† Range 0�12–0�25 0�12–0�5 2–4 0�25–2
45‡ MIC50 0�12 0�25 1 0�25

MIC90 0�5 0�5 2 1

Range 0�06–0�5 0�06–1 0�5–2 0�12–2
5§ MIC50 0�12 0�25 1 0�25

Range 0�12–0�5 0�12–0�5 1–2 0�12–0�5
140 MIC50 0�125 0�125 1 0�25 Collins et al. (2021)

MIC90 0�25 0�25 2 0�25
Range 0�03–0�25 0�015–0�25 0�06–4 0�06–0�5

*Isolates collected in ridinilazole treatment group, day 1 of treatment.
†Isolates collected in recurrent cases, ridinilazole treatment group.
‡Isolates collected on day 1 of treatment, vancomycin treatment group.
§Isolates collected in recurrent cases, vancomycin treatment group.
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patients, suggesting that inflamed GI tract does not pre-

cipitate increased ridinilazole levels (Vickers et al. 2017).

A nested cohort study in the phase II trial assessed

changes in the microbiota at multiple time points: days 1,

5 and 10 (treatment period), day 24 and day 40 (end of

the study), and at CDI recurrence. Vancomycin-treated

individuals had significant reductions in Bacteroides,

Clostridium coccoides, Clostridium leptum and Prevotella

groups at day 10, and increases in Enterobacteriaceae,

which persisted beyond day 10. Ridinilazole-treated individ-

uals had modest decreases in C. leptum by day 10, which

were recovering by day 25. Alpha diversity decreased with

both antimicrobials by day 10, but was significantly less

altered with ridinilazole (P < 0�0001). Microbiota composi-

tion also returned to pre-treatment levels sooner with

ridinilazole than with vancomycin (Thorpe et al. 2018).

Table 2 Reported activities of ridinilazole, fidaxomicin and five comparator antibiotics against specific strains of C. difficile that are often multi-

drug resistant

Ribotype n

Activity

(µgmL-1) Ridinilazole Fidaxomicin Vancomycin Metronidazole Clindamycin Moxifloxacin

Rifaximin/

Rifampin* Reference

RT 001 7 MIC50 0�06 0�008 0�5 1 128 16 0�002 Freeman

et al. (2016)Range 0�03–
0�125

0�008–
0�015

0�5–2 0�5–1 64–128 16–32 0�001–
0�002

16 MIC50 0�125 0�03 1 0�25 >32 8 0�03 Collins et al.

(2021)MIC90 0�125 0�06 2 0�25 >32 16 >32

Range 0�06–
0�125

0�015–0�25 0�06–4 0�125–0�25 0�25to >32 1to >32 0�008 to

>32

RT 002 8 MIC50 0�25 0�25 1 0�5 Goldstein

et al.,

(2013)

Range 0�125–
0�25

0�06–0�25 1–2 0�25–0�5

17 MIC50 0�125 0�06 1 0�25 >32 32 0�015 Collins et al.,

(2021)MIC90 0�25 0�125 2 0�25 >32 >32 0�03
Range 0�03–0�25 0�015–0�25 0�125–2 0�125–0�5 0�25 to >32 1 to >32 0�008–0�03

RT 012 13 MIC50 0�125 0�125 2 0�25 >32 2 0�015 Collins et al.,

(2021)MIC90 0�125 0�25 2 0�25 >32 2 0�03
Range 0�06–0�25 0�03–0�25 1–2 0�125–0�5 4 to >32 2 0�008–0�03

RT 014/

020

8 MIC50 0�125 0�25 1 0�5 Goldstein

et al.,

(2013)

Range 0�125–
0�25

0�06–0�5 1–2 0�25–0�5

19 MIC50 0�125 0�125 1 0�25 4 2 0�015 Collins et al.,

(2021)MIC90 0�125 0�125 2 0�25 16 16 0�03
Range 0�06–0�25 0�03–0�25 0�5–2 0�06–0�25 0�25 to >32 1–32 0�008–0�03

RT 017 2 Range 0�125–
0�25

0�06 0�5 0�125–0�25 128 32 0�001–32 Freeman

et al.,

(2016)

23 MIC50 0�125 0�06 1 0�125 >32 32 >32 Collins et al.,

(2021)MIC90 0�25 0�125 2 0�25 >32 32 >32

Range 0�03–
0�125

0�015–
0�125

0�5–2 0�06–0�25 8 to >32 1to >32 0�008 to

>32

RT 018 12 MIC50 0�125 0�06 1 0�125 >32 32 0�015 Collins et al.,

(2021)MIC90 0�125 0�125 2 0�25 >32 32 0�03
Range 0�06–

0�125
0�03–0�125 0�25–2 0�125–0�25 0�25 to >32 2–32 0�008–16

RT 027 11 MIC50 0�25 0�5 2 2 Goldstein

et al.,

(2013)

MIC90 0�25 0�5 4 8

Range 0�25–0�5 0�5–1 1–8 2–8

4 MIC50 0�25 0�06 0�5 1 8 32 32 Freeman

et al.,

(2016)

Range 0�06–0�25 0�06–0�125 0�5–1 1 8–128 16–32 0�002–32

RT 369 18 MIC50 0�125 0�125 1 0�25 >32 16 0�03 Collins et al.,

(2021)MIC90 0�25 0�25 1 0�25 >32 16 0�03
Range 0�06–0�25 0�03–0�25 0�5–2 0�125–0�25 0�25 to >32 8 to >32 0�015–0�03

*Rifaximin was tested by Collins et al., rifampin by Freeman et al.
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At day 10, intestinal bile acid profiles were measured

and compared with gut bacteria. Subjects receiving van-

comycin had nearly 100-fold increases in the ratio of con-

jugated to secondary bile acids in their stool compared

with baseline, while ridinilazole-treated subjects had ratios

similar to baseline (Qian et al. 2020). Significant positive

associations were detected between secondary bile acids

and members of the Bacteroidales and Clostridiales fami-

lies, which were depleted in the vancomycin group but

preserved in the ridinilazole group. Enterobacteriaceae cor-

related negatively with secondary bile acids and positively

with conjugated bile acids. Bile acid ratios were signifi-

cantly different among patients who experienced recurrent

CDI and those who did not (Thorpe et al. 2018).

Phase III clinical trials assessing the utility of ridinilazole

are currently underway, aiming to enroll 680 participants in

a randomized, double-blind active-controlled study compar-

ing 10-day treatment regimens with ridinilazole vs van-

comycin in CDI patients. The safety and efficacy of

ridinilazole will be evaluated with reference to the primary

outcome of clinical cure and no recurrence of CDI within

30 days post end of treatment. The secondary outcome mea-

sures of the study are to determine clinical cure at 12 days

and sustained clinical response (no recurrence) within 60

and 90 days following end of treatment. The study was com-

pleted in November 2021 (https://clinicaltrials.gov/ct2/show/

NCT03595566, accessed 10 February 2022).

Conclusions

CDI incidence rates continue to rise in many regions of

the world and the associated high costs and burden to

health systems are thus increasing. Moreover, recurrent

CDI is an important unmet need, therefore new treatments

are required to ensure faster, complete recovery and reduce

recurrent CDI events. Protecting the commensal gut

microbiota is essential to reduce risk of both initial and

recurrent episodes of CDI. Therefore, new therapies must

focus on effectively eliminating C. difficile while conserving

the gut microbiota. Ridinilazole shows significant promise

as a narrow-spectrum agent that preserves the gut micro-

biome and efficaciously treats CDI. Results from in vitro

and in vivo studies, and phase I and II clinical trials, show

that ridinilazole has great potential as a first-line agent,

effectively reducing the risk of recurrent CDI. Pending

results of phase III clinical trials ridinilazole could dramati-

cally change the prognosis for many CDI patients.
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