102 research outputs found

    Multicenter clinical evaluation of the Luminex Aries Flu A/B & RSV assay for pediatric and adult respiratory tract specimens

    Get PDF
    ABSTRACT Influenza A and B viruses and respiratory syncytial virus (RSV) are three common viruses implicated in seasonal respiratory tract infections and are a major cause of morbidity and mortality in adults and children worldwide. In recent years, an increasing number of commercial molecular tests have become available to diagnose respiratory viral infections. The Luminex Aries Flu A/B &amp; RSV assay is a fully automated sample-to-answer molecular diagnostic assay for the detection of influenza A, influenza B, and RSV. The clinical performance of the Aries Flu A/B &amp; RSV assay was prospectively evaluated in comparison to that of the Luminex xTAG respiratory viral panel (RVP) at four North American clinical institutions over a 2-year period. Of the 2,479 eligible nasopharyngeal swab specimens included in the prospective study, 2,371 gave concordant results between the assays. One hundred eight specimens generated results that were discordant with those from the xTAG RVP and were further analyzed by bidirectional sequencing. Final clinical sensitivity values of the Aries Flu A/B &amp; RSV assay were 98.1% for influenza A virus, 98.0% for influenza B virus, and 97.7% for RSV. Final clinical specificities for all three pathogens ranged from 98.6% to 99.8%. Due to the low prevalence of influenza B, an additional 40 banked influenza B-positive specimens were tested at the participating clinical laboratories and were all accurately detected by the Aries Flu A/B &amp; RSV assay. This study demonstrates that the Aries Flu A/B &amp; RSV assay is a suitable method for rapid and accurate identification of these causative pathogens in respiratory infections.</jats:p

    Development and evaluation of an enterovirus D68 real-time reverse transcriptase PCR assay

    Get PDF
    We have developed and evaluated a real-time reverse transcriptase PCR (RT-PCR) assay for the detection of human enterovirus D68 (EV-D68) in clinical specimens. This assay was developed in response to the unprecedented 2014 nationwide EV-D68 outbreak in the United States associated with severe respiratory illness. As part of our evaluation of the outbreak, we sequenced and published the genome sequence of the EV-D68 virus circulating in St. Louis, MO. This sequence, along with other GenBank sequences from past EV-D68 occurrences, was used to computationally select a region of EV-D68 appropriate for targeting in a strain-specific RT-PCR assay. The RT-PCR assay amplifies a segment of the VP1 gene, with an analytic limit of detection of 4 copies per reaction, and it was more sensitive than commercially available assays that detect enteroviruses and rhinoviruses without distinguishing between the two, including three multiplex respiratory panels approved for clinical use by the FDA. The assay did not detect any other enteroviruses or rhinoviruses tested and did detect divergent strains of EV-D68, including the first EV-D68 strain (Fermon) identified in California in 1962. This assay should be useful for identifying and studying current and future outbreaks of EV-D68 viruses

    Long-range depth imaging using a single-photon detector array and non-local data fusion

    Get PDF
    The ability to measure and record high-resolution depth images at long stand-off distances is important for a wide range of applications, including connected and automotive vehicles, defense and security, and agriculture and mining. In LIDAR (light detection and ranging) applications, single-photon sensitive detection is an emerging approach, offering high sensitivity to light and picosecond temporal resolution, and consequently excellent surface-to-surface resolution. The use of large format CMOS (complementary metal-oxide semiconductor) single-photon detector arrays provides high spatial resolution and allows the timing information to be acquired simultaneously across many pixels. In this work, we combine state-of-the-art single-photon detector array technology with non-local data fusion to generate high resolution three-dimensional depth information of long-range targets. The system is based on a visible pulsed illumination system at a wavelength of 670 nm and a 240 × 320 array sensor, achieving sub-centimeter precision in all three spatial dimensions at a distance of 150 meters. The non-local data fusion combines information from an optical image with sparse sampling of the single-photon array data, providing accurate depth information at low signature regions of the target

    Impact of antibacterials on subsequent resistance and clinical outcomes in adult patients with viral pneumonia: An opportunity for stewardship

    Get PDF
    INTRODUCTION: Respiratory viruses are increasingly recognized as significant etiologies of pneumonia among hospitalized patients. Advanced technologies using multiplex molecular assays and polymerase-chain reaction increase the ability to identify viral pathogens and may ultimately impact antibacterial use. METHOD: This was a single-center retrospective cohort study to evaluate the impact of antibacterials in viral pneumonia on clinical outcomes and subsequent multidrug-resistant organism (MDRO) infections/colonization. Patients admitted from March 2013 to November 2014 with positive respiratory viral panels (RVP) and radiographic findings of pneumonia were included. Patients transferred from an outside hospital or not still hospitalized 72 hours after the RVP report date were excluded. Patients were categorized based on exposure to systemic antibacterials: less than 3 days representing short-course therapy and 3 to 10 days being long-course therapy. RESULTS: A total of 174 patients (long-course, n = 67; short-course, n = 28; mixed bacterial-viral infection, n = 79) were included with most being immunocompromised (56.3 %) with active malignancy the primary etiology (69.4 %). Rhinovirus/Enterovirus (23 %), Influenza (19 %), and Parainfluenza (15.5 %) were the viruses most commonly identified. A total of 13 different systemic antibacterials were used as empiric therapy in the 95 patients with pure viral infection for a total of 466 days-of-therapy. Vancomycin (50.7 %), cefepime (40.3 %), azithromycin (40.3 %), meropenem (23.9 %), and linezolid (20.9 %) were most frequently used. In-hospital mortality did not differ between patients with viral pneumonia in the short-course and long-course groups. Subsequent infection/colonization with a MDRO was more frequent in the long-course group compared to the short-course group (53.2 vs 21.1 %; P = 0.027). CONCLUSION: This study found that long-course antibacterial use in the setting of viral pneumonia had no impact on clinical outcomes but increased the incidence of subsequent MDRO infection/colonization

    Epidemiology, co-infections, and outcomes of viral pneumonia in adults an observational cohort study

    Get PDF
    Advanced technologies using polymerase-chain reaction have allowed for increased recognition of viral respiratory infections including pneumonia. Co-infections have been described for several respiratory viruses, especially with influenza. Outcomes of viral pneumonia, including cases with co-infections, have not been well described. This was observational cohort study conducted to describe hospitalized patients with viral pneumonia including co-infections, clinical outcomes, and predictors of mortality. Patients admitted from March 2013 to November 2014 with a positive respiratory virus panel (RVP) and radiographic findings of pneumonia within 48 h of the index RVP were included. Co-respiratory infection (CRI) was defined as any organism identification from a respiratory specimen within 3 days of the index RVP. Predictors of in-hospital mortality on univariate analysis were evaluated in a multivariate model. Of 284 patients with viral pneumonia, a majority (51.8%) were immunocompromised. A total of 84 patients (29.6%) were found to have a CRI with 48 (57.6%) having a bacterial CRI. Viral CRI with HSV, CMV, or both occurred in 28 patients (33.3%). Fungal (16.7%) and other CRIs (7.1%) were less common. Many patients required mechanical ventilation (54%) and vasopressor support (36%). Overall in-hospital mortality was high (23.2%) and readmissions were common with several patients re-hospitalized within 30 (21.1%) and 90 days (36.7%) of discharge. Predictors of in-hospital mortality on multivariate regression included severity of illness factors, stem-cell transplant, and identification of multiple respiratory viruses. In conclusion, hospital mortality is high among adult patients with viral pneumonia and patients with multiple respiratory viruses identified may be at a higher risk

    Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence

    Get PDF
    The vaccinia virus (VACV) strain Western Reserve C16 protein has been characterized and its effects on virus replication and virulence have been determined. The C16L gene is present in the inverted terminal repeat and so is one of the few VACV genes that are diploid. The C16 protein is highly conserved between different VACV strains, and also in the orthopoxviruses variola virus, ectromelia virus, horsepox virus and cowpox virus. C16 is a 37.5 kDa protein, which is expressed early during infection and localizes to the cell nucleus and cytoplasm of infected and transfected cells. The loss of the C16L gene had no effect on virus growth kinetics but did reduce plaque size slightly. Furthermore, the virulence of a virus lacking C16L (vΔC16) was reduced in a murine intranasal model compared with control viruses and there were reduced virus titres from 4 days post-infection. In the absence of C16, the recruitment of inflammatory cells in the lung and bronchoalveolar lavage was increased early after infection (day 3) and more CD4+ and CD8+ T cells expressed the CD69 activation marker. Conversely, late after infection with vΔC16 (day 10) there were fewer T cells remaining, indicating more rapid clearance of infection. Collectively, these data indicate that C16 diminishes the immune response and is an intracellular immunomodulator

    2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines: Developed in collaboration with the International Society for Heart and Lung Transplantation

    Get PDF
    Heart failure (HF) is a major and growing public health problem in the United States. Approximately 5 million patients in this country have HF, and over 550,000 patients are diagnosed with HF for the first time each year. The disorder is the primary reason for 12 to 15 million office visits and 6.5 million hospital days each year. From 1990 to 1999, the annual number of hospitalizations has increased from approximately 810,000 to over 1 million for HF as a primary diagnosis and from 2.4 to 3.6 million for HF as a primary or secondary diagnosis. In 2001, nearly 53 000 patients died of HF as a primary cause. The number of HF deaths has increased steadily despite advances in treatment, in part because of increasing numbers of patients with HF due to better treatment and “salvage” of patients with acute myocardial infarctions (MIs) earlier in life. Heart failure is primarily a condition of the elderly, and thus the widely recognized “aging of the population” also contributes to the increasing incidence of HF. The incidence of HF approaches 10 per 1000 population after age 65, and approximately 80% of patients hospitalized with HF are more than 65 years old. Heart failure is the most common Medicare diagnosis-related group (i.e., hospital discharge diagnosis), and more Medicare dollars are spent for the diagnosis and treatment of HF than for any other diagnosis. The total estimated direct and indirect costs for HF in 2005 were approximately 27.9billion.IntheUnitedStates,approximately27.9 billion. In the United States, approximately 2.9 billion annually is spent on drugs for the treatment of HF

    Relationship among fibre type, myosin ATPase activity and contractile properties

    Full text link
    At least two types of skeletal muscle myosin have been described which differ in ATPase activity and stability in alkaline or acidic media. Differences in ATPase characteristics distinguish Type I and Type II fibres histochemically. In this study, ATPase activity of myosin from muscles of several species with known histochemical and contractile properties has been determined to test the hypothesis that (1) myosin ATPase activity, (2) histochemical determination of fibre types and (3) maximum shortening velocity, all provide equivalent estimates of contractile properties in muscles of mixed fibre types. Maximum shortening velocity appears to be proportional to ATPase activity as expected from previous reports by Barany. However, both myosin ATPase and the maximum shortening velocity exhibit curvilinear relationships to the fraction of cross-sectional area occupied by Type II fibres. Therefore, we reject the hypothesis and conclude that histochemically determined myofibrillar ATPase does not accurately reflect the intrinsic ATPase activity or shortening velocity in muscles of mixed fibre types. Our data are consistent with the presence of more than two myosin isozymes or with a mixture of isozymes within single muscle fibres.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42851/1/10735_2005_Article_BF01005238.pd
    corecore