66 research outputs found

    Complex field verification using a large area CMOS MAPS upstream in radiotherapy

    Get PDF
    A multileaf collimator (MLC) is an integral component in modern radiotherapy machines as it dynamically shapes the photon field used for patient treatment. Currently, the MLC leaves which collimate the treatment field are mechanically calibrated to ±1 mm every 3 months and during pre-treatment calibration are calibrated to the mechanically set leaf positions. Leaf drift can occur between calibration dates and hence exceed the ±1 mm tolerance. Pre-treatment verification, increases LINAC usage time so is seldom performed for each individual patient treatment, but instead for an acceptable sample of patients and/or treatment fractions. Independent real-time treatment verification is therefore desirable. We are developing a large area CMOS MAPS upstream of the patient to monitor MLC leaf positions for real-time treatment verification. CMOS MAPS are radiation hard for photon and electron irradiation, have high readout speeds and low attenuation which makes them an ideal upstream radiation detector for radiotherapy. Previously, we reported on leaf position reconstruction for single leaves using the Lassena, a 12 × 14 cm2, three side buttable MAPS suitable for clinical deployment. Sobel operator based methods were used for edge reconstruction. It was shown that the correspondence between reconstructed and set leaf position was excellent and resolutions ranged between 60.6 ± 8 and 109 ± 12 μm for a single central leaf with leaf extensions ranging from 1 to 35 mm using 0.3 sec of treatment beam time at 400 MU/min. Here, we report on leaf edge reconstruction using updated methods for complex leaf configurations, as occur in clinical use. Results show that leaf positions can be reconstructed with resolutions of 62 ± 6 μm for single leaves and 86 ± 16 μm for adjacent leaves at the isocenter using 0.15 sec at 400 MU/min of treatment beam. These resolutions are significantly better than current calibration standards

    Development of CVD diamond detectors for clinical dosimetry

    Get PDF

    A Monte Carlo model of an agility head for a 10-MV photon beam

    Get PDF
    Objective: Modelling linear accelerator (linac) photon beams using the Monte Carlo (MC) technique is presently the most precise technique with which to calculate radiotherapy beam data. Complicated treatment plans can be achieved by using the Agility multileaf collimator. The focus of this study is to model a linac, integrated with an Agility head, using EGSnrc MC code and to investigate its accuracy compared with actual measurements. Methodology: A 10-MV photon beam from an Agility head installed in an Elekta Synergy linac was simulated using BEAMnrc MC code. Various incident electron energies were used to generate percentage depth dose curves for the MC model and were compared with measurements using gamma analysis (γ). Consequently, the focal spot with different full width half-maximums (FWHMs) was used to tune dose profiles. In addition, any differences in dose profiles were further minimized using different angular divergences. Results: The electron energy of 9.6 MeV was found to represent the best match with the measurements, where the γ pass rate was 100%. For dose profile comparisons, a circular focal spot with an FWHM of 0.45 cm and an angular divergence of 0.04∘ produced the best match with the measurements. Conclusion: The presented MC linac model integrated with an Agility head for a 10-MV photon beam can be reliably used for dose calculations

    Determination of the photon spectrum of a therapeutic linear accelerator near the maze entrance: Comparison of Monte Carlo modeling and measurements using scintillation detectors corrected for pulse pile‐up

    Get PDF
    AbstractPurposeThe determination of x‐ray spectra near the maze entrance of linear accelerator (LINAC) rooms is challenging due to the pulsed nature of the LINAC source. Mathematical methods to account for pulse pile‐up have been examined. These methods utilize the highly periodic pulsing structure of the LINAC, differing from the effects of high‐intensity radioactive sources.MethodsSodium iodide (NaI) and plastic scintillation detectors were used to determine the energy spectra at different points near the maze entrance of a medical LINAC. Monte Carlo calculations of the energy distribution of scattered photons were used to simulate the energy spectrum at the maze entrance. The proposed algorithm uses the Monte Carlo code, FLUKA, to calculate a response function for both detectors. To determine the effects of the pile‐up in the spectra, the Poisson distribution was used, employing the average number of photons per pulse (μ) interacting with the detector. The quantity, μ, was obtained from the ratio of the number of events detected to the number of pulses delivered.The energy spectra at various distances from the maze entrance were measured using NaI and plastic scintillation detectors. From these measurements, the values of µ were calculated, and the pile‐up probability was determined. The FLUKA Monte Carlo code was used to calculate the spectrum at the maze entrance and the response matrices of the NaI and plastic scintillation detectors. The algorithm based on the Poisson distribution was applied to calculate the spectrum.ResultsThe agreement between the calculated and measured spectra was within the first standard deviation of the variance expected in µ. This agreement confirms that photons at the maze entrance have energies between 30 and 240 keV for a maze with three turns, with an average energy of around 85 keV. After pile‐up correction, the range of the pulse height distribution with the plastic scintillation detector, which has a low atomic number, was decreased (0 to 140 keV). In contrast, the range of the pulse height distribution with the NaI scintillation detector was closer to the photon spectrum (0 to 240 keV).ConclusionsThe corrected spectrum demonstrates that using a FLUKA Monte Carlo code and an algorithm based on the Poisson distribution are effective methods in removing the distortion due to the pile‐up in LINAC spectra when measuring with NaI and plastic scintillation detectors. The agreement between the corrected and measured spectra indicates that Monte Carlo modeling can accurately determine the spectrum of a LINAC machine at the maze entrance

    Monte Carlo simulation of photons backscattering from various thicknesses of lead layered over concrete for energies 0.25–20 MeV using FLUKA code

    Get PDF
    There is an increased interest in determining the photon reflection coefficient for layered systems consisting of lead (Pb) and concrete. The generation of accurate reflection coefficient data has implications for many fields, especially radiation protection, industry, and radiotherapy room design. Therefore, this study aims to calculate the reflection coefficients of photons for various lead thicknesses covering the concrete. This new data for lead, layered over concrete, supports various applications, such as an improved design of the mazes used for radiotherapy rooms, which helps to reduce cost and space requirements. The FLUKA Monte Carlo code was used to calculate photon reflection coefficients for a concrete wall with different energies. The reflection coefficient was also calculated for a concrete wall covered by varying thicknesses of lead to study the effect of lining this metal on the concrete wall. The concrete's reflection coefficient data were compared to internationally published data and showed that Monte Carlo calculations differed significantly from some of the extrapolated data. The absorbed dose of backscattered photons for various thicknesses of lead covering the ordinary concrete has been tabulated as a function of the reflection angle. Also, the reflection coefficient as a function of the Pb thicknesses covering the ordinary concrete has been figured to study the dose reduction factor. The generation of accurate data for reflection coefficients is vital for many fields, especially for radiation protection and radiotherapy room design. The new data have been presented for lead layered over concrete in various applications, such as an improvement in the design of the mazes used for radiotherapy rooms, thereby reducing the cost and space requirements. In addition, the Monte Carlo method enables calculating the energy distribution of reflected photons, and these were shown for a range of angles

    A novel technique to optimise the length of a linear accelerator treatment room maze without compromising radiation protection

    Get PDF
    Simulations with the FLUKA Monte Carlo code were used to establish the possibility of using lead to cover the existing concrete walls of a linear accelerator treatment room maze, in order to reduce the dose of the scattered photons at the maze entrance. In the present work, a pilot study performed at Singleton Hospital in Swansea was used to pioneer the use of lead sheets of various thicknesses to absorb scattered low energy photons in the maze. The dose reduction was considered to be due to the strong effect of the photoelectric interaction in lead resulting in attenuation of the back-scattered photons. Calculations with FLUKA with mono-energetic photons were used to represent the main components of the X-ray spectrum up to 10 MV. The reason for using mono-energetic photons was to study the behaviour of each energy component from associated interaction processes. The results showed that adding lead of 1 to 4 mm thickness to the walls and floor of the maze reduced the dose at the maze entrance by up to 80%. Subsequent scatter dose measurements performed at the maze entrance of an existing treatment room with 1.3 mm thickness of lead sheets added to the maze walls and floor supported the results from the simulations. The dose reduction at the maze entrance with the lead in place was up to 50%. The variation between simulation and measurement was attributed to the fact that insufficient lead was available to completely cover the maze walls and floor. This novel proposal of covering part or the entire maze walls with a few millimetres thickness of lead has implications for the design of linear accelerator treatment rooms since it has potential to provide savings, in terms of space and costs, when an existing maze requires upgrading in an environment where space is limited and the maze length cannot be extended sufficiently to reduce the dose

    Dose reduction of scattered photons from concrete walls lined with lead: Implications for improvement in design of megavoltage radiation therapy facility mazes

    Get PDF
    ABSTRACTPURPOSE: This study explores the possibility of using lead to cover part of the radiation therapy facility maze walls in order to absorb low energy photons and reduce the total dose at the maze entrance of radiation therapy rooms.METHODS: Experiments and Monte Carlo simulations were utilized to establish the possibility of using high-Z materials to cover the concrete walls of the maze in order to reduce the dose of the scattered photons at the maze entrance. The dose of the back- scattered photons from a concrete wall was measured for various scattering angles. The dose was also calculated by the FLUKA and EGSnrc Monte Carlo Codes. The FLUKA Code was also used to simulate an existing radiotherapy room to study the effect of multiple scattering when adding lead to cover the concrete walls of the maze. Mono-energetic photons were used to represent the main components of the x-ray spectrum up to 10 MV.RESULTS: It was observed that when the concrete wall was covered with just 2 mm of lead the measured dose rate at all backscattering angles was reduced by 20% for photons of energy comparable to Co-60 emissions and 70% for Cs-137 emissions. The simulations with FLUKA and EGS showed that the reduction in the dose was potentially even higher when lead was added. One explanation for the reduction is the increased absorption of backscattered photons due to the photoelectric interaction in lead. The results also showed that adding 2 mm lead to the concrete walls and floor of the maze reduced the dose at the maze entrance by up to 90%
    corecore