207 research outputs found

    The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii

    Get PDF
    We present a weak-lensing analysis of 22 early-type (strong) lens galaxies, based on deep HST images obtained as part of the Sloan Lens ACS Survey. Using advanced techniques to control systematic uncertainties, we show that weak-lensing signal is detected out to ~300 h^(-1) kpc (at the mean lens redshift z = 0.2). We analyze blank control fields from COSMOS in the same manner, inferring that the residual systematic uncertainty in the tangential shear is less than 0.3%. A joint strong- and weak-lensing analysis shows that the average total mass density profile is consistent with isothermal (i.e., ρ ∝ r^(-2)) over two decades in radius (3-300 h^(-1) kpc, approximately 1-100 effective radii). This finding extends by over an order of magnitude in radius previous results, based on strong lensing and/or stellar dynamics, that luminous and dark components "conspire" to form an isothermal mass distribution. In order to disentangle the contributions of luminous and dark matter, we fit a two-component mass model (de Vaucouleurs+NFW) to the weak- and strong-lensing constraints. It provides a good fit to the data with only two free parameters: (1) the average stellar mass-to-light ratio M_*/L_V = 4.48 ± 0.46 h M_☉ L_☉^(-1) (at z = 0.2), in agreement with that expected for an old stellar population; (2) the average virial mass-to-light ratio M_(vir)/L_V = 246^(+101)_(-87) h M_☉ L_☉^(-1). Taking into account the scatter in the mass-luminosity relation, the latter result is in good agreement with semianalytical models of massive galaxy formation. The dark matter fraction inside the sphere of radius, the effective radius, is found to be 27% ± 4%. Our results are consistent with galaxy-galaxy lensing studies of early-type galaxies that are not strong lenses, in the 30-300 h^(-1) kpc radius range. Thus, within the uncertainties, our results are representative of early-type galaxies in general

    Solar system science with the Wide-Field Infrared Survey Telescope

    Get PDF
    We present a community-led assessment of the solar system investigations achievable with NASA’s next-generation space telescope, the Wide Field Infrared Survey Telescope (WFIRST). WFIRST will provide imaging, spectroscopic, and coronagraphic capabilities from 0.43 to 2.0  μm and will be a potential contemporary and eventual successor to the James Webb Space Telescope (JWST). Surveys of irregular satellites and minor bodies are where WFIRST will excel with its 0.28  deg^2 field-of-view Wide Field Instrument. Potential ground-breaking discoveries from WFIRST could include detection of the first minor bodies orbiting in the inner Oort Cloud, identification of additional Earth Trojan asteroids, and the discovery and characterization of asteroid binary systems similar to Ida/Dactyl. Additional investigations into asteroids, giant planet satellites, Trojan asteroids, Centaurs, Kuiper belt objects, and comets are presented. Previous use of astrophysics assets for solar system science and synergies between WFIRST, Large Synoptic Survey Telescope, JWST, and the proposed Near-Earth Object Camera mission is discussed. We also present the case for implementation of moving target tracking, a feature that will benefit from the heritage of JWST and enable a broader range of solar system observations

    The Impact of Interpixel Capacitance in CMOS Detectors on PSF Shapes and Implications for WFIRST

    Get PDF
    Unlike optical CCDs, near-infrared detectors, which are based on CMOS hybrid readout technology, typically suffer from electrical crosstalk between the pixels. The interpixel capacitance (IPC) responsible for the crosstalk affects the point-spread function (PSF) of the telescope, increasing the size and modifying the shape of all objects in the images while correlating the Poisson noise. Upcoming weak lensing surveys that use these detectors, such as WFIRST, place stringent requirements on the PSF size and shape (and the level at which these are known), which in turn must be translated into requirements on IPC. To facilitate this process, we present a first study of the effect of IPC on WFIRST PSF sizes and shapes. Realistic PSFs are forward-simulated from physical principles for each WFIRST bandpass. We explore how the PSF size and shape depends on the range of IPC coupling with pixels that are connected along an edge or corner; for the expected level of IPC in WFIRST, IPC increases the PSF sizes by ~5%. We present a linear fitting formula that describes the uncertainty in the PSF size or shape due to uncertainty in the IPC, which could arise for example due to unknown time evolution of IPC as the detectors age or due to spatial variation of IPC across the detector. We also study of the effect of a small anisotropy in the IPC, which further modifies the PSF shapes. Our results are a first, critical step in determining the hardware and characterization requirements for the detectors used in the WFIRST survey

    The DEEP Groth Strip Galaxy Redshift Survey. III. Redshift Catalog and Properties of Galaxies

    Full text link
    The Deep Extragalactic Evolutionary Probe (DEEP) is a series of spectroscopic surveys of faint galaxies, targeted at the properties and clustering of galaxies at redshifts z ~ 1. We present the redshift catalog of the DEEP 1 GSS pilot phase of this project, a Keck/LRIS survey in the HST/WFPC2 Groth Survey Strip. The redshift catalog and data, including reduced spectra, are publicly available through a Web-accessible database. The catalog contains 658 secure galaxy redshifts with a median z=0.65, and shows large-scale structure walls to z = 1. We find a bimodal distribution in the galaxy color-magnitude diagram which persists to z = 1. A similar color division has been seen locally by the SDSS and to z ~ 1 by COMBO-17. For red galaxies, we find a reddening of only 0.11 mag from z ~ 0.8 to now, about half the color evolution measured by COMBO-17. We measure structural properties of the galaxies from the HST imaging, and find that the color division corresponds generally to a structural division. Most red galaxies, ~ 75%, are centrally concentrated, with a red bulge or spheroid, while blue galaxies usually have exponential profiles. However, there are two subclasses of red galaxies that are not bulge-dominated: edge-on disks and a second category which we term diffuse red galaxies (DIFRGs). The distant edge-on disks are similar in appearance and frequency to those at low redshift, but analogs of DIFRGs are rare among local red galaxies. DIFRGs have significant emission lines, indicating that they are reddened mainly by dust rather than age. The DIFRGs in our sample are all at z>0.64, suggesting that DIFRGs are more prevalent at high redshifts; they may be related to the dusty or irregular extremely red objects (EROs) beyond z>1.2 that have been found in deep K-selected surveys. (abridged)Comment: ApJ in press. 24 pages, 17 figures (12 color). The DEEP public database is available at http://saci.ucolick.org

    A Snapshot of How Latino Heterosexual Men Promote Sexual Health Within Their Social Networks: Process Evaluation Findings from an Efficacious Community-Level Intervention

    Get PDF
    HoMBReS was a community-level social network intervention designed to increase sexual health among Latino heterosexual men who were members of a multi-county soccer league

    Predictors of Heavy Episodic Drinking and Weekly Drunkenness Among Immigrant Latinos in North Carolina

    Get PDF
    Few studies have examined correlates of heavy drinking among rural immigrant Latino men. This analysis identified correlates of typical week drunkenness and past 30-day heavy episodic drinking, within a sample of immigrant Latino men in rural North Carolina (n = 258). In the bivariate analyses, Mexican birth, entering the United States as an adult, and year-round employment were associated with increased odds of typical week drunkenness, and higher acculturation and affiliation with a religion with strict prohibitions against drinking alcohol were associated with lower odds of typical week drunkenness. Being older, Mexican birth, and entering the United States as an adult were associated with increased odds of heavy episodic drinking, and affiliation with a religion with strict prohibitions against drinking alcohol was associated with decreased odds of heavy episodic drinking. In multivariable modeling, only religious affiliation was associated with typical week drunkenness. Mexican birth, entering the United States as an adult and were associated with increased odds of heavy episodic drinking, and affiliation with a religion with strict prohibitions against drinking alcohol and completing high school was associated with lower odds of heavy episodic drinking. The health of minority men in the United States has been neglected, and immigrant Latino men comprise a particularly vulnerable population. This analysis provides initial data on some factors associated with heavy drinking within a population about whom little is known. Future studies should examine moderating or mediating factors between age, acculturation, religiosity, and heavy drinking that might be targets for behavioral interventions

    KELT-10b: The First Transiting Exoplanet from the KELT-South Survey -- A Hot Sub-Jupiter Transiting a V = 10.7 Early G-Star

    Get PDF
    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V=10.7V = 10.7 star (TYC 8378-64-1), with Teff_{eff} = 5948±745948\pm74 K, logg\log{g} = 4.3190.030+0.0204.319_{-0.030}^{+0.020} and [Fe/H] = 0.090.10+0.110.09_{-0.10}^{+0.11}, an inferred mass M_{*} = 1.1120.061+0.0551.112_{-0.061}^{+0.055} M_{\odot} and radius R_{*} = 1.2090.035+0.0471.209_{-0.035}^{+0.047} R_{\odot}. The planet has a radius RP_{P} = 1.3990.049+0.0691.399_{-0.049}^{+0.069} RJ_{J} and mass MP_{P} = 0.6790.038+0.0390.679_{-0.038}^{+0.039} MJ_{J}. The planet has an eccentricity consistent with zero and a semi-major axis aa = 0.052500.00097+0.000860.05250_{-0.00097}^{+0.00086} AU. The best fitting linear ephemeris is T0T_{0} = 2457066.72045±\pm0.00027 BJDTDB_{TDB} and P = 4.1662739±\pm0.0000063 days. This planet joins a group of highly inflated transiting exoplanets with a radius much larger and a mass much less than those of Jupiter. The planet, which boasts deep transits of 1.4%, has a relatively high equilibrium temperature of Teq_{eq} = 137723+281377_{-23}^{+28} K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.8170.054+0.0680.817_{-0.054}^{+0.068} ×\times 109^9 erg s1^{-1} cm2^{-2}, which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b is unlikely to survive beyond the current subgiant phase, due to a concomitant in-spiral of the planet over the next \sim1 Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V << 11 in the southern hemisphere, making it a promising candidate for future atmospheric characterization studies.Comment: 20 pages, 13 figures, 7 tables, accepted for publication in MNRA
    corecore