7 research outputs found
Like gold dust these days’: domestic violence fact-finding hearings in child contact cases
Fact-finding hearings may be held to determine disputed allegations of domestic violence in child contact cases in England and Wales, and can play a vital role for mothers seeking protection and autonomy from violent fathers. Drawing on the author’s empirical study, this article examines the implications for the holding of fact-finding hearings of judges’ and professionals’ understandings of domestic violence and the extent to which they perceive it to be relevant to contact. While more judges and professionals are developing their understanding of domestic violence, the ambit of when and how it is considered relevant to contact has grown increasingly narrow, which suggests that many disputed allegations of domestic violence are disregarded and women and children continue to be put at risk from violent fathers. This bifurcated approach is likely to have significant implications for recent developments in this area of family law which are considered in this article
Structural Features of Nucleosomes Reorganized by Yeast FACT and Its HMG Box Component, Nhp6
The Saccharomyces cerevisiae Spt16/Cdc68, Pob3, and Nhp6 proteins (SPN or yFACT) bind to and alter nucleosomes in vitro, providing a potential explanation for their importance in both transcription and replication in vivo. We show that nucleosomes bound by either Nhp6 alone or the yFACT complex remain largely intact and immobile but are significantly reorganized, as indicated by changes in the pattern of sensitivity to DNase I and enhanced digestion by some restriction endonucleases. In contrast, yFACT enhanced access to exonuclease III only at very high levels of enzyme, suggesting that the DNA near the entry and exit sites of nucleosomes is largely unperturbed and that the position of the histone octamers relative to the DNA is not altered during reorganization. DNase I sensitivity was enhanced at sites clustered near the center of the nucleosomal DNA, away from the entry and exit points, and the pattern of nuclease sensitivity was only mildly affected by the configuration of linker extensions, further indicating that linkers play only a minor role in the reorganization of nucleosomes by yFACT. The DNA in contact with H2A-H2B dimers is therefore the region whose nuclease sensitivity was the least affected by yFACT reorganization. The most dramatic changes in nucleosome structure occurred when Spt16-Pob3 and the HMG box protein Nhp6 were both present, but Nhp6 alone altered DNase I sensitivity at some specific sites, supporting an independent role for this class of proteins in the general management of chromatin properties. yFACT activity does not require ATP hydrolysis and does not alter the position of nucleosomes, indicating that it acts through a mechanism distinct from chromatin remodeling. The results presented here suggest instead that yFACT promotes polymerase progression by reorganizing nucleosome cores into a less inhibitory conformation in which the properties of DNA sequences near the center of the nucleosomes are altered
Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure.
Spt16/Cdc68, Pob3, and Nhp6 collaborate in vitro and in vivo as the yeast factor SPN, which is homologous to human FACT. SPN/FACT complexes mediate passage of polymerases through nucleosomes and are important for both transcription and replication. An spt16 mutation was found to be intolerable when combined with a mutation in any member of the set of functionally related genes HIR1, HIR2/SPT1, HIR3/HPC1, or HPC2. Mutations in POB3, but not in NHP6A/B, also display strong synthetic defects with hir/hpc mutations. A screen for other mutations that cause dependence on HIR/HPC genes revealed genes encoding members of the Paf1 complex, which also promotes transcriptional elongation. The Hir/Hpc proteins affect the expression of histone genes and also promote normal deposition of nucleosomes; either role could explain an interaction with elongation factors. We show that both spt16 and pob3 mutants respond to changes in histone gene numbers, but in opposite ways, suggesting that Spt16 and Pob3 each interact with histones but perhaps with different subsets of these proteins. Supporting this, spt16 and pob3 mutants also display different sensitivities to mutations in the N-terminal tails of histones H3 and H4 and to mutations in enzymes that modulate acetylation of these tails. Our results support a model in which SPN/FACT has two functions: it disrupts nucleosomes to allow polymerases to access DNA, and it reassembles the nucleosomes afterward. Mutations that impair the reassembly activity cause chromatin to accumulate in an abnormally disrupted state, imposing a requirement for a nucleosome reassembly function that we propose is provided by Hir/Hpc proteins