24 research outputs found

    Definition, prevalence and predictive factors of benign multiple sclerosis

    Get PDF
    Background: Multiple sclerosis (MS) is characterized by a great inter-individual variability in disease course and severity. Some patients experience a rather mild course, controversially called ‘benign MS’ (BMS). The usefulness of this entity in clinical practice remains unclear. Methods: We performed a literature search in PubMed, Web of Science and Cochrane Library databases from November 1980 to December 2015, using the following key words: benign multiple sclerosis, diagnosis, imaging, prognosis, predictive, natural history and predefined inclusion criteria. Results: Our search yielded 26 publications. Most definitions were based on the Expanded Disease Status Scale (EDSS), which is heavily weighted towards physical disability. Between 30 and 80% of relapsing-remitting MS patients have EDSS <3 or 4 at 10 years after onset. Having only one relapse in the first 5 years and EDSS ≤2 at 5 years or EDSS ≤3 at 10 years appears to be predictive for a prolonged benign disease course, without protecting against disease progression at a later stage. Evidence on the predictive value of MRI parameters remains limited. Conclusions: Current BMS definitions have some predictive value for future physical disability, but do not take into account the age at EDSS and the potentially disrupting effects of non-EDSS symptoms and cognitive impairment. It appears to correspond to mild RRMS in the first decades and its prevalence varies. Since early and accurate prediction of BMS is not yet possible, the clinical relevance is limited. Research approaches are suggested

    Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes

    Get PDF
    Objective Multiple sclerosis (MS) is a heterogenous, inflammatory disease of the central nervous system. Microbiota alterations in MS versus healthy controls (HC) are observed, but results are inconsistent. We studied diversity, enterotypes, and specific gut microbial taxa variation between MS and HC, and between MS subgroups. Methods Amplicon sequencing of the 16S ribosomal RNA V4 region (Illumina MiSeq) was used to evaluate alpha and beta diversity, enterotypes, and relative taxa abundances on stool samples. MS subgroups were based on phenotype, disease course modifiers, and treatment status. Results were controlled for recently identified confounders of microbiota composition. Results Ninety-eight MS patients and 120 HC were included. Microbial richness was lower in interferon-treated (RRMS_I, N = 24) and untreated relapsing-remitting MS during relapse (RRMS_R, N = 4) when compared to benign (BMS, N = 20; Z = -3.07, Pcorr = 0.032 and Z = -2.68, Pcorr = 0.055) and primary progressive MS (PPMS, N = 26; Z = -2.39, Pcorr = 0.062 and Z = -2.26, Pcorr = 0.071). HC (N = 120) and active untreated MS (RRMS_U, N = 24) showed intermediate microbial richness. Enterotypes were associated with clinical subgroups (N = 218, chi(2) = 36.10, P = 0.002), with Bacteroides 2 enterotype being more prevalent in RRMS_I. Butyricicoccus abundance was lower in PPMS than in RRMS_U (Z = -3.00, Pcorr = 0.014) and BMS (Z = -2.56, Pcorr = 0.031), lower in RRMS_I than in BMS (Z = -2.50, Pcorr = 0.034) and RRMS_U (Z = -2.91, Pcorr = 0.013), and inversely correlated with self-reported physical symptoms (rho = -0.400, Pcorr = 0.001) and disease severity (rho = -0.223, P = 0.027). Interpretation These results emphasize the importance of phenotypic subcategorization in MS-microbiome research, possibly explaining previous result heterogeneity, while showing the potential for specific microbiome-based biomarkers for disease activity and severity

    A metformin add-on clinical study in multiple sclerosis to evaluate brain remyelination and neurodegeneration (MACSiMiSE-BRAIN): study protocol for a multi-center randomized placebo controlled clinical trial

    Get PDF
    IntroductionDespite advances in immunomodulatory treatments of multiple sclerosis (MS), patients with non-active progressive multiple sclerosis (PMS) continue to face a significant unmet need. Demyelination, smoldering inflammation and neurodegeneration are important drivers of disability progression that are insufficiently targeted by current treatment approaches. Promising preclinical data support repurposing of metformin for treatment of PMS. The objective of this clinical trial is to evaluate whether metformin, as add-on treatment, is superior to placebo in delaying disease progression in patients with non-active PMS.Methods and analysisMACSiMiSE-BRAIN is a multi-center two-arm, 1:1 randomized, triple-blind, placebo-controlled clinical trial, conducted at five sites in Belgium. Enrollment of 120 patients with non-active PMS is planned. Each participant will undergo a screening visit with assessment of baseline magnetic resonance imaging (MRI), clinical tests, questionnaires, and a safety laboratory assessment. Following randomization, participants will be assigned to either the treatment (metformin) or placebo group. Subsequently, they will undergo a 96-week follow-up period. The primary outcome is change in walking speed, as measured by the Timed 25-Foot Walk Test, from baseline to 96 weeks. Secondary outcome measures include change in neurological disability (Expanded Disability Status Score), information processing speed (Symbol Digit Modalities Test) and hand function (9-Hole Peg test). Annual brain MRI will be performed to assess evolution in brain volumetry and diffusion metrics. As patients may not progress in all domains, a composite outcome, the Overall Disability Response Score will be additionally evaluated as an exploratory outcome. Other exploratory outcomes will consist of paramagnetic rim lesions, the 2-minute walking test and health economic analyses as well as both patient- and caregiver-reported outcomes like the EQ-5D-5L, the Multiple Sclerosis Impact Scale and the Caregiver Strain Index.Ethics and disseminationClinical trial authorization from regulatory agencies [Ethical Committee and Federal Agency for Medicines and Health Products (FAMHP)] was obtained after submission to the centralized European Clinical Trial Information System. The results of this clinical trial will be disseminated at scientific conferences, in peer-reviewed publications, to patient associations and the general public.Trial registrationClinicalTrials.gov Identifier: NCT05893225, EUCT number: 2023-503190-38-00

    Cells to the rescue : emerging cell-based treatment approaches for NMOSD and MOGAD

    No full text
    Cell-based therapies are gaining momentum as promising treatments for rare neurological autoimmune diseases, including neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease. The development of targeted cell therapies is hampered by the lack of adequate animal models that mirror the human disease. Most cell-based treatments, including HSCT, CAR-T cell, tolerogenic dendritic cell and mesenchymal stem cell treatment have entered early stage clinical trials or have been used as rescue treatment in treatment-refractory cases. The development of antigen-specific cell-based immunotherapies for autoimmune diseases is slowed down by the rarity of the diseases, the lack of surrogate outcomes and biomarkers that are able to predict long-term outcomes and/or therapy effectiveness as well as challenges in the manufacturing of cellular products. These challenges are likely to be overcome by future research
    corecore