11 research outputs found

    Spectrophotometric analysis of dental bleaching after bonding and debonding of orthodontic brackets

    Get PDF
    Abstract Introduction: The aim of this study was to evaluate the bleaching effect after aging sim- ulation in teeth submitted to bonding and debonding of orthodontic brackets. Materials and methods: For this study, 90 human premolars were selected, and randomly divided into 6 groups: control, bleaching, and other 4 groups submitted to bleaching after bonding and debonding brackets using different methods. Color measurement of sample through the CIE L*a*b* system was performed in three moments: T1 – after brackets debonding, T2 – after staining cycling, and T3 – after bleaching. For evaluation of results among the components L*, a* and b*, the two criteria analysis of variance and the multiple comparison Tukey test (p < 0.05) were used. Results: Statistically significant difference was observed among the groups submitted to brackets bonding and debonding through self-conditioning adhesive system and tungsten drill, also the con- trol and bleaching groups between the moments T1 e T2. Conclusion: Bonding and debonding brackets methods tested in this study showed influence on the sample color change, and after the tooth bleaching process, only the group without brackets previous bonding achieved the color value presented before the staining and aging of samples in the brackets absence

    Translucency and masking ability of a translucent zirconia with different thicknesses over dark backgrounds

    Get PDF
    ABSTRACT Objectives: To evaluate the translucency, contrast ratio and masking ability of a translucent zirconia with different thicknesses. Methods: Disc shaped specimens (n= 3) with 10 mm (Ø) x 1.5 mm, 1 mm and 0.7 mm (thickness) were manufactured simulating all-ceramic simplified restorations. Substrate discs (n= 2; Ø: 10 mm; thickness: 2 mm) were simulated with composite resin shades: A2 (positive control) and C4; and metal alloys: silver (Ni-Cr) and golden (Cu-Al). Optical properties of the 9 translucent zirconia specimens placed on the 3 different substrates were analyzed by a spectrophotometer. The color variation (ΔE00) between each ceramic structure over the positive control substrate (A2) and over the dark backgrounds (C4, silvery, golden) were obtained as to their ceramic masking ability and subjected to non-parametric Kruskal Wallis test (5%). The translucency parameter (TP00) and contrast ratio (CR) of the different thicknesses of the ceramic discs were also collected and analyzed by one-way ANOVA and the Tukey test (5%). Results: The translucent zirconia showed greater opacity in the thickness of 1.5 mm, although it was not statistically different between 0.7 and 1.0 mm. All dark backgrounds significantly affected the final color of the simplified restoration in all evaluated thicknesses. However, the increase in ceramic thickness showed a decrease in ΔE00 values for all substrates. Conclusion: The translucent zirconia was not able to mask the dark substrates, independent of the evaluated thickness

    School environment and individual factors influence oral health related quality of life in Brazilian children

    No full text
    Abstract The aim of this study was to verify the influence of school environment and individual factors on oral health related quality of life (OHRQoL) in a representative sample of Brazilian schoolchildren. A cross-sectional study was conducted with 1,134 12-year-old schoolchildren from Santa Maria, Southern Brazil. Clinical variables were obtained from examinations carried out by calibrated individuals. In addition, parents/guardians answered a semi-structured questionnaire about sociodemographic characteristics. Contextual variables were obtained from the city’s official database, including the mean income of the neighborhood in which the school was located and the Basic School’s Development Index (IDEB) of the school. The Brazilian version of the Child Perception Questionnaire (CPQ11–14) was used to access OHRQoL. Data analysis was conducted using multilevel Poisson regression. Children studying in schools with a higher classification on the IDEB presented a lower CPQ11–14 mean score (rate ratio 0.80, 95%CI 0.74–0.88) than those studying in schools with a lower IDEB. Regarding individual variables, children with carious cavities, malocclusion, and gingival bleeding presented higher CPQ11-14 mean values than their counterparts. The same was observed in children from families with low socioeconomic status. School environment, and individual clinical and socioeconomic factors were associated with schoolchildren’s OHRQoL

    Effect of the composition and manufacturing process on the resin microtensile bond strength to ceramics

    No full text
    The present study aimed to investigate the bond strength between resin cement and different glass-ceramics manufactured in different processing systems using two different microtensile bond strength test (ÎŒTBs) assemblies (ceramic-ceramic or ceramic-dentin). For this, ceramic blocks were fabricated with adhesive surface area of 5 × 5 mm to test the different possibilities combining the two different glass-ceramic compositions (feldspathic – FEL and lithium disilicate - LD), the three manufacturing-processes (CAD/CAM, heat-pressed or layered for FEL; CAD/CAM or heat-pressed for LD) and the two ÎŒTBS assemblies (ceramic-ceramic or ceramic-dentin). Half of the samples of each ceramic evaluated were made by cementing the ceramic blocks in another ceramic block and the other half by cementing the ceramic blocks in ground molars with exposed dentin, using resin cement (Rely X ARC, 3 M ESPE). The samples were stored for 24 h in distilled water at 37 °C and then sectioned into microbars (±1 mm2, n = 30). These specimens were submitted to the ÎŒTBS and the data were analyzed by specific statistical tests (α = 0.05). The fractured surfaces were examined under a stereomicroscope and the failure mode was classified. In addition, finite element analysis (FEA) was performed to observe the maximum tensile stress in the resin cement when a ÎŒTBS load was applied (10 N) and during the resin cement polymerization shrinkage. The CAD/CAM glass-ceramics have better bond strength than the other evaluated manufacturing processes, the LD groups had higher ÎŒTBS values than the FEL groups in ceramic-ceramic assembly; dentin as a substrate (ceramic-dentin assembly) had a negative influence on the results for all evaluated materials. Regarding the FEA results, the maximum tensile stress in ceramic-ceramic groups was 16.1–16.5 MPa (when 10 N load was simulated), and 50.8–51.2 MPa (during the resin cement polymerization shrinkage). For the ceramic-dentin groups, the maximum tensile stress was 16.9 and 17.1 MPa on the ceramic side and 17.6 and 17.8 MPa on the dentin side (10 N load simulation); 49.8 and 49.4 MPa on the ceramic side and 49.7 and 49.4 MPa on the dentin side (resin cement polymerization shrinkage). Different glass-ceramic compositions and manufacturing processes induced distinct bond strength values (LD had better results). Moreover, the ÎŒTBS assembly interferes with the results obtained, having the ceramic-ceramic set-up inducing higher bond results than the ceramic-dentin arrangement

    In-lab simulation of CAD/CAM grinding and intaglio surface treatments of 4YSZ monolithic restorations: Effect on its load-bearing capacity under fatigue

    No full text
    Objectives: To evaluate the effect of in-lab simulation of CAD/CAM grinding and intaglio surface treatments on the surface characteristics (topography and roughness) and fatigue behavior of adhesively luted 4YSZ simplified restorations. Methods: Ceramic discs (Ø = 10 mm, thickness = 1 mm) were randomly allocated into 6 groups considering: “In-lab simulation of CAD/CAM grinding” (ground or polished) and “intaglio surface treatments”: Ctrl (without surface treatment), AlOx (aluminum oxide air abrasion) or GLZ (glaze spray application). The surface roughness of all samples was measured, the treated discs received a ceramic primer, were luted with resin cement onto a dentin analogue material (woven glass-reinforced epoxy resin) and tested under a cyclic fatigue test (step-stress approach, n = 15; 1.4 Hz, 10,000 cycles/step, step-size of 100N starting at 200N until failure). A complementary analysis was performed to corroborate the findings in the fatigue test that the glaze fill defects increase the mechanical properties of the ceramic. To do so, bars (n= 10; 1.0 × 1.0 × 12 mm; considering the groups: N-ID: non-indented; ID: indented; ID-GLZ: indented plus glaze spray application) were indented in a vickers hardness tester to produce a crack pattern, treated with glaze or not, and then submitted to flexural strength tests (FS). Fractographic and topographic analysis were performed. Results: In-lab simulation of CAD/CAM grinding decreased the fatigue failure load of the 4YSZ ceramic when comparing polished and ground groups, regardless of surface treatment. GLZ induced better fatigue performance compared to the air abrasion, regardless of the grinding condition (ground or polished surface). The results of the flexural strength test corroborated the findings in the fatigue test, as the ID-GLZ group presented superior FS than the ID group, however both had inferior FS than N-ID. There is an inverse association between roughness and fatigue failure load, as the higher the surface roughness, the lower the fatigue failure load. Failures in the fatigue and flexural strength tests started from the face subjected to tensile stresses. Conclusion: In-lab simulation of CAD/CAM grinding had a detrimental effect on the fatigue behavior of 4YSZ and glaze spray induced better 4YSZ performance compared to the air abrasion. The intaglio surface treatments differently influenced the 4YSZ fatigue performance, however, only glaze spray can reverse the damage caused by the grinding

    Mechanical characterization of a multi-layered zirconia: Flexural strength, hardness, and fracture toughness of the different layers

    No full text
    This study compared the flexural strength under monotonic (static - sσ) and cyclic load application (fatigue - fσ), hardness (H) and fracture toughness (KIC) of different layers of a multi-layered zirconia (IPS e.max ZirCAD MT Multi, Ivoclar). Each layer was sectioned, classified into three groups according to yttria content (4-YSZ, 4/5-YSZ and 5-YSZ), and shaped on samples for flexural strength and fracture toughness tests (bars: 1.0 × 1.0 × 11 mm); and Vickers hardness test (plates: 1.5 × 4.0 × 5.0 mm). Flexural strength under monotonic load application (sσ; n = 10) was obtained through two different devices (three-point-bending and ball-in-hole device) and fatigue flexural strength (fσ; n = 15; initial load: 10 N; step-size: 5 N; 10,000 cycles/step) was assessed using a ball-in-hole device under cyclic load application. Vickers hardness test (n = 5), fracture toughness test (n = 10), and additional analyzes (Finite Element Analysis - FEA, Energy-dispersive X-ray spectroscopy - EDS and Scanning Electron Microscopy - SEM) were also performed. No differences were found between the different devices in the monotonic flexural strength test, and FEA showed similar tensile stress distribution for the two devices. 4-YSZ showed higher values of flexural strength under monotonic and cyclic load application modes (sσ = 1114.73 MPa; fσ = 798.84 MPa), and fracture toughness (KIC = 3.90 MPa√m). 4/5-YSZ had an intermediate sσ; however, fσ was similar to 5-YSZ (404.00–429.36 MPa) and KIC similar to 4-YSZ (KIC = 3.66 MPa√m). No statistical differences were found for hardness and Weibull modulus for fatigue flexural strength data. The amount of yttria in the layer compositions increased from 4-YSZ to 5-YSZ, and larger zirconia crystals were observed in the topographic images of 5-YSZ. Failures in the flexural strength and toughness tests started from the face subjected to tensile stress. Different layers of the multi-layered zirconia blank presented distinct mechanical properties. 4-YSZ (cervical layer) presented the highest flexural strength under monotonic and cyclic loads (fatigue), and higher fracture toughness even similar to the transition layer (4/5-YSZ). Hardness was similar between the layers. The ball-in-hole device performed similarly to the three-point bending device and can be used as an alternative to the traditional method

    Is the application of a silane-based coupling agent necessary to stabilize the fatigue performance of bonded simplified lithium disilicate restorations?

    No full text
    This study evaluated the influence of ceramic surface conditioning and storage regimen (baseline vs. aging) on the fatigue performance of simplified lithium disilicate glass-ceramic restorations. A total of 90 ceramic discs (Ø= 10 mm; thickness= 1.0 mm) were allocated into 6 groups (n= 15), considering 2 factors: “ceramic surface treatment” – CA (only silane-based coupling agent, Monobond N), HF (5% hydrofluoric acid etching), or HF+CA (5% HF acid etching plus silane-based coupling agent); and “storage regimen” – baseline (24 hours – 5 days of distilled water at 37 °C), or long-term aging (180 days of distilled water at 37 °C + 25,000 thermal cycles). After intaglio ceramic conditioning, adhesive bonding (Multilink N) was performed onto epoxy resin discs (Ø= 10 mm; thickness= 2.5 mm) and the bonded sets were subjected to step-stress fatigue tests (initial load: 200 N; step-size: 50 N; 10,000 cycles per step; 20 Hz). Fatigue data were analyzed using Kaplan-Meier and Weibull statistical analyses. Fractography and topography analyses were also conducted. The fatigue findings demonstrated that the performance among groups for both baseline and aging conditions maintained a tendency: the CA groups had the worst behavior (baseline: 893 N/143,667 cycles; aging: 639 N/84,179 cycles), while the surface etching with HF (baseline: 1247 N/214,333 cycles; aging: 816.67 N/128,333 cycles) and HF+CA groups (baseline: 1290 N/222,333 cycles; aging: 900 N/145,000 cycles) had no statistically significant difference between them. The aging protocol reduced the performance of all groups. The groups with better fatigue performance (HF and HF+CA) did not have statistical differences regarding structural reliability (Weibull modulus). Most failures were radial cracks from the cementation interface, except for CA aging specimens, with 27% failing from debonding. The HF etching led to noteworthy surface topographical alterations. Micromechanical interlocking resulting from HF acid etching remained prevalent in the fatigue behavior. Thus, the silane-based coupling agent (Monobond N) does not need to be applied after HF etching in terms of fatigue behavior outcomes

    Cyclic fatigue vs static loading for shear bond strength test of lithium disilicate and dentin substrates: A comparison of resin cement viscosities

    No full text
    Objective: To explore the effect of resin cement viscosities on the shear bond strength under static and fatigue load of lithium disilicate and dentin substrates. Methods: Bonded tri-layer samples (lithium disilicate ceramic cylinder, resin cement, and substrate – ceramic or dentin) was performed considering 2 factors (n = 15): “resin cement viscosity” (high, HV; or low, LV) and “loading mode” (static, s-SBS; or fatigue shear bond strength, f-SBS). The specimens were subjected to s-SBS (1 mm/min, 1 kN load cell) and f-SBS (cyclic fatigue, initial load: 10 N; step-size: 5 N; 10,000 cycles/step; underwater). Failure mode, topography, and finite element analysis (FEA) were performed. Results: The resin cement viscosity did not influence the s-SBS and f-SBS of lithium disilicate substrate; however, it affected the bond strength to dentin, with HV presenting the worst fatigue behavior (f-SBS = 6.89 MPa). Cyclic loading in shear testing induced a notorious detrimental effect with a relevant decrease (16–56 %) in bond strength and survival rates, except for dentin substrate and LV. Most failures were adhesive. A distinct pattern comparing the disilicate and dentin was identified and FEA demonstrated that there was a stress concentration on the top of the cement layer. Significance: Cyclic fatigue loading in shear testing has detrimental effects on the adhesive behavior and survival probabilities of bonded lithium disilicate sets, regardless of resin cement viscosity. In contrast, resin cement viscosity affects the bond strength and the survival rates of dentin substrate submitted to cyclic loading mode, in which a low viscosity results in better performance

    Impact of try-in paste removal on the fatigue behavior of bonded lithium disilicate ceramics

    No full text
    This in vitro study assessed the effectiveness of three cleaning protocols (air-water spray, 37% phosphoric acid, or Ivoclean) on lithium disilicate restorations' fatigue behavior after try-in paste application, compared to a clean condition. Lithium disilicate discs (IPS e.max CAD, Ivoclar) with Ø-= 12 mm and 1 mm thickness were prepared from prefabricated CAD-CAM blocks, polished, subjected to CAD-CAM milling topography simulation and crystallization. After, etching with 5% hydrofluoric acid and the application of try-in paste (Variolink try-in paste shade white; load of 2.5 N for 5 min) was performed. Discs that received try-in paste were divided into three groups according to the removal protocol: SPRAY – air-water spray for 30 s; HPO – active application of 37% phosphoric acid for 60 s; IVOC – application of Ivoclean for 20 s. Control group (CTRL group) did not receive the try-in paste application. Half of the specimens (n= 15) were tested in the baseline condition (24 h up to 7 days), and the others underwent 25,000 thermal cycles (5 – 55 °C) + 210 days of distilled water storage (37 °C). Additional specimens (n= 3) underwent monotonic testing (1 mm/min). Fatigue testing involved a cyclic fatigue approach (20 Hz, initial load = 100 N – 5000 cycles, step size = 50 N – 10,000 cycles) until a visible crack appeared. Fractographic and topographic analyses were performed. Fatigue data were statistically analyzed with two-way ANOVA, Kaplan-Meier log-rank (Mantel-Cox), and independent t-test (α= 0.05). In the baseline condition, the IVOC group resulted in a superior fatigue behavior compared to the CTRL and SPRAY groups, but similar to the HPO group. The HPO and SPRAY presented a similar fatigue behavior to the CTRL group. It was noticed a decrease in fatigue behavior after aging, which resulted in all the cleaning protocols leading to similar fatigue behavior compared to the CTRL group. On the SPRAY group surface, try-in pastes remnants were noticed. In summary, despite a detrimental impact at baseline conditions, all tested cleaning protocols seem proper to remove the try-in paste from the ceramic's surface in the long-term evaluation.</p
    corecore