12 research outputs found

    Balanced Combinations of Solutions in Multi-Objective Optimization

    Full text link
    For every list of integers x_1, ..., x_m there is some j such that x_1 + ... + x_j - x_{j+1} - ... - x_m \approx 0. So the list can be nearly balanced and for this we only need one alternation between addition and subtraction. But what if the x_i are k-dimensional integer vectors? Using results from topological degree theory we show that balancing is still possible, now with k alternations. This result is useful in multi-objective optimization, as it allows a polynomial-time computable balance of two alternatives with conflicting costs. The application to two multi-objective optimization problems yields the following results: - A randomized 1/2-approximation for multi-objective maximum asymmetric traveling salesman, which improves and simplifies the best known approximation for this problem. - A deterministic 1/2-approximation for multi-objective maximum weighted satisfiability

    Mehrkriterielle Optimierung und Sprachgleichungen

    No full text
    Praktische Optimierungsprobleme beinhalten oft mehrere gleichberechtigte, sich jedoch widersprechende Kriterien. Beispielsweise will man bei einer Reise zugleich möglichst schnell ankommen, sie soll aber auch nicht zu teuer sein. Im ersten Teil dieser Arbeit wird die algorithmische Beherrschbarkeit solcher mehrkriterieller Optimierungsprobleme behandelt. Es werden zunächst verschiedene Lösungsbegriffe diskutiert und auf ihre Schwierigkeit hin verglichen. Interessanterweise stellt sich heraus, dass diese Begriffe für ein einkriterielles Problem stets gleich schwer sind, sie sich ab zwei Kriterien allerdings stark unterscheiden könen (außer es gilt P = NP). In diesem Zusammenhang wird auch die Beziehung zwischen Such- und Entscheidungsproblemen im Allgemeinen untersucht. Schließlich werden neue und verbesserte Approximationsalgorithmen für verschieden Varianten des Problems des Handlungsreisenden gefunden. Dabei wird mit Mitteln der Diskrepanztheorie eine Technik entwickelt, die ein grundlegendes Hindernis der Mehrkriteriellen Optimierung aus dem Weg schafft: Gegebene Lösungen so zu kombinieren, dass die neue Lösung in allen Kriterien möglichst ausgewogen ist und gleichzeitig die Struktur der Lösungen nicht zu stark zerstört wird. Der zweite Teil der Arbeit widmet sich verschiedenen Aspekten von Gleichungssystemen für (formale) Sprachen. Einerseits werden konjunktive und Boolesche Grammatiken untersucht. Diese sind Erweiterungen der kontextfreien Grammatiken um explizite Durchschnitts- und Komplementoperationen. Es wird unter anderem gezeigt, dass man bei konjunktiven Grammatiken die Vereinigungsoperation stark einschränken kann, ohne dabei die erzeugte Sprache zu ändern. Außerdem werden bestimmte Schaltkreise untersucht, deren Gatter keine Wahrheitswerte sondern Mengen von Zahlen berechnen. Für diese Schaltkreise wird das Äquivalenzproblem betrachtet, also die Frage ob zwei gegebene Schaltkreise die gleiche Menge berechnen oder nicht. Es stellt sich heraus, dass, abhängig von den erlaubten Gattertypen, die Komplexität des Äquivalenzproblems stark variiert und für verschiedene Komplexitätsklassen vollständig ist, also als (parametrisierter) Vertreter für diese Klassen stehen kann.Practical optimization problems often comprise several incomparable and conflicting objectives. When booking a trip using several means of transport, for instance, it should be fast and at the same time not too expensive. The first part of this thesis is concerned with the algorithmic solvability of such multiobjective optimization problems. Several solution notions are discussed and compared with respect to their difficulty. Interestingly, these solution notions are always equally difficulty for a single-objective problem and they differ considerably already for two objectives (unless P = NP). In this context, the difference between search and decision problems is also investigated in general. Furthermore, new and improved approximation algorithms for several variants of the traveling salesperson problem are presented. Using tools from discrepancy theory, a general technique is developed that helps to avoid an obstacle that is often hindering in multiobjective approximation: The problem of combining two solutions such that the new solution is balanced in all objectives and also mostly retains the structure of the original solutions. The second part of this thesis is dedicated to several aspects of systems of equations for (formal) languages. Firstly, conjunctive and Boolean grammars are studied, which are extensions of context-free grammars by explicit intersection and complementation operations, respectively. Among other results, it is shown that one can considerably restrict the union operation on conjunctive grammars without changing the generated language. Secondly, certain circuits are investigated whose gates do not compute Boolean values but sets of natural numbers. For these circuits, the equivalence problem is studied, i.\,e.\ the problem of deciding whether two given circuits compute the same set or not. It is shown that, depending on the allowed types of gates, this problem is complete for several different complexity classes and can thus be seen as a parametrized) representative for all those classes

    Multiobjective Optimization and Language Equations

    No full text
    Practical optimization problems often comprise several incomparable and conflicting objectives. When booking a trip using several means of transport, for instance, it should be fast and at the same time not too expensive. The first part of this thesis is concerned with the algorithmic solvability of such multiobjective optimization problems. Several solution notions are discussed and compared with respect to their difficulty. Interestingly, these solution notions are always equally difficulty for a single-objective problem and they differ considerably already for two objectives (unless P = NP). In this context, the difference between search and decision problems is also investigated in general. Furthermore, new and improved approximation algorithms for several variants of the traveling salesperson problem are presented. Using tools from discrepancy theory, a general technique is developed that helps to avoid an obstacle that is often hindering in multiobjective approximation: The problem of combining two solutions such that the new solution is balanced in all objectives and also mostly retains the structure of the original solutions. The second part of this thesis is dedicated to several aspects of systems of equations for (formal) languages. Firstly, conjunctive and Boolean grammars are studied, which are extensions of context-free grammars by explicit intersection and complementation operations, respectively. Among other results, it is shown that one can considerably restrict the union operation on conjunctive grammars without changing the generated language. Secondly, certain circuits are investigated whose gates do not compute Boolean values but sets of natural numbers. For these circuits, the equivalence problem is studied, i. e. the problem of deciding whether two given circuits compute the same set or not. It is shown that, depending on the allowed types of gates, this problem is complete for several different complexity classes and can thus be seen as a (parametrized) representative for all those classes

    The Shrinking Property for NP and coNP

    No full text
    We study the shrinking and separation properties (two notions well-known in descriptive set theory) for NP and coNP and show that under reasonable complexity-theoretic assumptions, both properties do not hold for NP and the shrinking property does not hold for coNP. In particular we obtain the following results. 1. NP and coNP do not have the shrinking property, unless PH is finite. In general, Σ P n and Π P n do not have the shrinking property, unless PH is finite. This solves an open question from [Sel94a]. 2. The separation property does not hold for NP, unless UP ⊆ coNP. 3. The shrinking property does not hold for NP, unless there exist NP-hard disjoint NPpairs (existence of such pairs would contradict a conjecture by Even, Selman, and Yacobi [ESY84]). 4. The shrinking property does not hold for NP, unless there exist complete disjoint NP-pairs. Moreover, we prove that the assumption NP = coNP is too weak to refute the shrinking property for NP in a relativizable way. For this we construct an oracle relative to which P = NP ∩ coNP, NP = coNP, and NP has the shrinking property. This solves an open question by Blass and Gurevich [BG84] who explicitly ask for such an oracle
    corecore