65 research outputs found

    Alternative Macroautophagic Pathways

    Get PDF
    Macroautophagy is a bulk degradation process that mediates the clearance of long-lived proteins, aggregates, or even whole organelles. This process includes the formation of autophagosomes, double-membrane structures responsible for delivering cargo to lysosomes for degradation. Currently, other alternative autophagy pathways have been described, which are independent of macroautophagic key players like Atg5 and Beclin 1 or the lipidation of LC3. In this review, we highlight recent insights in indentifying and understanding the molecular mechanism responsible for alternative autophagic pathways

    Reduction in PA28αβ activation in HD mouse brain correlates to increased mHTT aggregation in cell models

    Get PDF
    Huntington’s disease is an autosomal dominant heritable disorder caused by an expanded CAG trinucleotide repeat at the N-terminus of the Huntingtin (HTT) gene. Lowering the levels of soluble mutant HTT protein prior to aggregation through increased degradation by the proteasome would be a therapeutic strategy to prevent or delay the onset of disease. Native PAGE experiments in HdhQ150 mice and R6/2 mice showed that PA28αβ disassembles from the 20S proteasome during disease progression in the affected cortex, striatum and hippocampus but not in cerebellum and brainstem. Modulating PA28αβ activated proteasomes in various in vitro models showed that PA28αβ improved polyQ degradation, but decreased the turnover of mutant HTT. Silencing of PA28αβ in cells lead to an increase in mutant HTT aggregates, suggesting that PA28αβ is critical for overall proteostasis, but only indirectly affects mutant HTT aggregation

    Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP

    Get PDF
    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms

    Interfering with DNA Decondensation as a Strategy Against Mycobacteria

    Get PDF
    Tuberculosis is once again a major global threat, leading to more than 1 million deaths each year. Treatment options for tuberculosis patients are limited, expensive and characterized by severe side effects, especially in the case of multidrug-resistant forms. Uncovering novel vulnerabilities of the pathogen is crucial to generate new therapeutic strategies. Using high resolution microscopy techniques, we discovered one such vulnerability of Mycobacterium tuberculosis. We demonstrate that the DNA of M. tuberculosis can condense under stressful conditions such as starvation and antibiotic treatment. The DNA condensation is reversible and specific for viable bacteria. Based on these observations, we hypothesized that blocking the recovery from the condensed state could weaken the bacteria. We showed that after inducing DNA condensation, and subsequent blocking of acetylation of DNA binding proteins, the DNA localization in the bacteria is altered. Importantly under these conditions, Mycobacterium smegmatis did not replicate and its survival was significantly reduced. Our work demonstrates that agents that block recovery from the condensed state of the nucleoid can be exploited as antibiotic. The combination of fusidic acid and inhibition of acetylation of DNA binding proteins, via the Eis enzyme, potentiate the efficacy of fusidic acid by 10 and the Eis inhibitor to 1,000-fold. Hence, we propose that successive treatment with antibiotics and drugs interfering with recovery from DNA condensation constitutes a novel approach for treatment of tuberculosis and related bacterial infections

    Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy

    Get PDF
    Radiotherapy is one of the most successful cancer therapies. Here the effect of irradiation on antigen presentation by MHC class I molecules was studied. Cell surface expression of MHC class I molecules was increased for many days in a radiation dose-dependent manner as a consequence of three responses. Initially, enhanced degradation of existing proteins occurred which resulted in an increased intracellular peptide pool. Subsequently, enhanced translation due to activation of the mammalian target of rapamycin pathway resulted in increased peptide production, antigen presentation, as well as cytotoxic T lymphocyte recognition of irradiated cells. In addition, novel proteins were made in response to γ-irradiation, resulting in new peptides presented by MHC class I molecules, which were recognized by cytotoxic T cells. We show that immunotherapy is successful in eradicating a murine colon adenocarcinoma only when preceded by radiotherapy of the tumor tissue. Our findings indicate that directed radiotherapy can improve the efficacy of tumor immunotherapy

    Polyglutamine Expansion Accelerates the Dynamics of Ataxin-1 and Does Not Result in Aggregate Formation

    Get PDF
    Polyglutamine expansion disorders are caused by an expansion of the polyglutamine (polyQ) tract in the disease related protein, leading to severe neurodegeneration. All polyQ disorders are hallmarked by the presence of intracellular aggregates containing the expanded protein in affected neurons. The polyQ disorder SpinoCerebellar Ataxia 1 (SCA1) is caused by a polyQ-expansion in the ataxin-1 protein, which is thought to lead to nuclear aggregates.Using advanced live cell fluorescence microscopy and a filter retardation assay we show that nuclear accumulations formed by polyQ-expanded ataxin-1 do not resemble aggregates of other polyQ-expanded proteins. Instead of being static, insoluble aggregates, nuclear accumulations formed by the polyQ-expanded ataxin-1 showed enhanced intracellular kinetics as compared to wild-type ataxin-1. During mitosis, ataxin-1 accumulations redistributed equally among daughter cells, in contrast to polyQ aggregates. Interestingly, polyQ expansion did not affect the nuclear-cytoplasmic shuttling of ataxin-1 as proposed before.These results indicate that polyQ expansion does not necessarily lead to aggregate formation, and that the enhanced kinetics may affect the nuclear function of ataxin-1. The unexpected findings for a polyQ-expanded protein and their consequences for ongoing SCA1 research are discussed

    Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with Antigen Processing, TAP

    Get PDF
    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms

    Alternative Macroautophagic Pathways

    No full text
    Correspondence should be addressed to Katrin Juenemann, [email protected] and Eric A. Reits, [email protected] Macroautophagy is a bulk degradation process that mediates the clearance of long-lived proteins, aggregates, or even whole organelles. This process includes the formation of autophagosomes, double-membrane structures responsible for delivering cargo to lysosomes for degradation. Currently, other alternative autophagy pathways have been described, which are independent of macroautophagic key players like Atg5 and Beclin 1 or the lipidation of LC3. In this review, we highlight recent insights in indentifying and understanding the molecular mechanism responsible for alternative autophagic pathways
    corecore