39,134 research outputs found
The Eurovision St Andrews collection of photographs
This report describes the Eurovision image collection compiled for the ImageCLEF (Cross Language Evaluation Forum) evaluation exercise. The image collection consists of around 30,000 photographs from the collection provided by the University of St Andrews Library. The construction and composition of this unique image collection are described, together with the necessary information to obtain and use the image collection
Household fish preparation hygiene and cholera transmission in Monrovia, Liberia.
BACKGROUND: In the 1980s Vibrio cholerae was found to be an autochthonous resident of aquatic environments. As result, ingestion of undercooked, contaminated fish has been associated with cholera transmission. An alternative mechanism of transmission associated with fish was hypothesised by Schürmann et al. in 2002. He described a cholera case that was more likely to have been infected by contamination on the patient's hands rather than by ingestion of contaminated fish. METHODOLOGY: With fish being the main diet in Liberia, we decided to examine fish samples and preparation techniques in Monrovia. Excreta of 15 fish, caught in the estuarine waters of Monrovia, were analysed for V. cholerae. In addition, fish preparation methods were observed in 30 households. RESULTS: Two fish samples were found positive. Observations revealed that hygiene measures during the gutting process of fish were limited; although hands were usually rinsed, in all cases soap was not used. Furthermore, contaminated water was frequently reused during food preparation. CONCLUSIONS: Since the cooking process of fish (and thus elimination of bacteria) in Monrovia usually consists of both frying and boiling, it seems plausible that in this context, the hypothesis by Schürmann et al. could be applicable. Further research is necessary to confirm this association, which could be a starting point for more context-specific health education campaigns addressing food preparation hygiene as risk factor for cholera
Solar type III radio burst time characteristics at LOFAR frequencies and the implications for electron beam transport
Context. Solar type III radio bursts contain a wealth of information about the dynamics of electron beams in the solar corona and
the inner heliosphere; this information is currently unobtainable through other means. However, the motion of different regions of an
electron beam (front, middle, and back) have never been systematically analysed before.
Aims. We characterise the type III burst frequency-time evolution using the enhanced resolution of LOFAR (Low Frequency Array)
in the frequency range 30–70 MHz and use this to probe electron beam dynamics.
Methods. The rise, peak, and decay times with a ∼ 0.2 MHz spectral resolution were defined for a collection of 31 type III bursts.
The frequency evolution was used to ascertain the apparent velocities of the front, middle, and back of the type III sources, and the
trends were interpreted using theoretical and numerical treatments.
Results. The type III time profile was better approximated by an asymmetric Gaussian profile and not an exponential, as was used
previously. Rise and decay times increased with decreasing frequency and showed a strong correlation. Durations were shorter than
previously observed. Drift rates from the rise times were faster than from the decay times, corresponding to inferred mean electron
beam speeds for the front, middle, and back of 0.2, 0.17, 0.15 c, respectively. Faster beam speeds correlate with shorter type III
durations. We also find that the type III frequency bandwidth decreases as frequency decreases.
Conclusions. The different speeds naturally explain the elongation of an electron beam in space as it propagates through the heliosphere.
The expansion rate is proportional to the mean speed of the exciter; faster beams expand faster. Beam speeds are attributed to
varying ensembles of electron energies at the front, middle, and back of the beam
Spatial expansion and speeds of type III electron beam sources in the solar corona
A component of space weather, electron beams are routinely accelerated in the
solar atmosphere and propagate through interplanetary space. Electron beams
interact with Langmuir waves resulting in type III radio bursts. Electron beams
expand along the trajectory, and using kinetic simulations, we explore the
expansion as the electrons propagate away from the Sun. Specifically, we
investigate the front, peak and back of the electron beam in space from derived
radio brightness temperatures of fundamental type III emission. The front of
the electron beams travelled at speeds from 0.2c--0.7c, significantly faster
than the back of the beam that travelled between 0.12c--0.35c. The difference
in speed between the front and the back elongates the electron beams in time.
The rate of beam elongation has a 0.98 correlation coefficient with the peak
velocity; in-line with predictions from type III observations. The inferred
speeds of electron beams initially increase close to the acceleration region
and then decrease through the solar corona. Larger starting densities and
harder initial spectral indices result in longer and faster type III sources.
Faster electron beams have higher beam energy densities, produce type IIIs with
higher peak brightness temperatures and shorter FWHM durations. Higher
background plasma temperatures also increase speeds, particularly at the back
of the beam. We show how our predictions of electron beam evolution influences
type III bandwidth and drift-rates. Our radial predictions of electron beam
speed and expansion can be tested by the upcoming in situ electron beam
measurements made by Solar Orbiter and Parker Solar Probe.Comment: 19 pages, 20 figures, submitted to Ap
Stopping Frequency of Type III Solar Radio Bursts in Expanding Magnetic Flux Tubes
Understanding the properties of type III radio bursts in the solar corona and
interplanetary space is one of the best ways to remotely deduce the
characteristics of solar accelerated electron beams and the solar wind plasma.
One feature of all type III bursts is the lowest frequency they reach (or
stopping frequency). This feature reflects the distance from the Sun that an
electron beam can drive the observable plasma emission mechanism. The stopping
frequency has never been systematically studied before from a theoretical
perspective. Using numerical kinetic simulations, we explore the different
parameters that dictate how far an electron beam can travel before it stops
inducing a significant level of Langmuir waves, responsible for plasma radio
emission. We use the quasilinear approach to model self-consistently the
resonant interaction between electrons and Langmuir waves in inhomogeneous
plasma, and take into consideration the expansion of the guiding magnetic flux
tube and the turbulent density of the interplanetary medium. We find that the
rate of radial expansion has a significant effect on the distance an electron
beam travels before enhanced leves of Langmuir waves, and hence radio waves,
cease. Radial expansion of the guiding magnetic flux tube rarefies the electron
stream to the extent that the density of non-thermal electrons is too low to
drive Langmuir wave production. The initial conditions of the electron beam
have a significant effect, where decreasing the beam density or increasing the
spectral index of injected electrons would cause higher type III stopping
frequencies. We also demonstrate how the intensity of large-scale density
fluctuations increases the highest frequency that Langmuir waves can be driven
by the beam and how the magnetic field geometry can be the cause of type III
bursts only observed at high coronal frequencies.Comment: 11 pages, 8 figures, accepted in Astronomy and Astrophysic
Imaging Spectroscopy of Type U and J Solar Radio Bursts with LOFAR
Radio U-bursts and J-bursts are signatures of electron beams propagating
along magnetic loops confined to the corona. The more commonly observed type
III radio bursts are signatures of electron beams propagating along magnetic
loops that extend into interplanetary space. Given the prevalence of solar
magnetic flux to be closed in the corona, it is an outstanding question why
type III bursts are more frequently observed than U-bursts or J-bursts. We use
LOFAR imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and
J-bursts, for the first time, to understand why electron beams travelling along
coronal loops produce radio emission less often. The different radio source
positions were used to model the spatial structure of the guiding magnetic flux
tube and then deduce the energy range of the exciting electron beams without
the assumption of a standard density model. The radio sources infer a magnetic
loop 1 solar radius in altitude, with the highest frequency sources starting
around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24
c, with the front of the electron beam travelling faster than the back of the
electron beam. The velocities correspond to energy ranges within the beam from
0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical
coronal density models and the density gradient is smaller. We found that a
more restrictive range of accelerated beam and background plasma parameters can
result in U-bursts or J-bursts, causing type III bursts to be more frequently
observed. The large instability distances required before Langmuir waves are
produced by some electron beams, and the small magnitude of the background
density gradients make closed loops less facilitating for radio emission than
loops that extend into interplanetary space.Comment: 9 pages, 7 figure
Langmuir Wave Electric Fields Induced by Electron Beams in the Heliosphere
Solar electron beams responsible for type III radio emission generate
Langmuir waves as they propagate out from the Sun. The Langmuir waves are
observed via in-situ electric field measurements. These Langmuir waves are not
smoothly distributed but occur in discrete clumps, commonly attributed to the
turbulent nature of the solar wind electron density. Exactly how the density
turbulence modulates the Langmuir wave electric fields is understood only
qualitatively. Using weak turbulence simulations, we investigate how solar wind
density turbulence changes the probability distribution functions, mean value
and variance of the beam-driven electric field distributions. Simulations show
rather complicated forms of the distribution that are dependent upon how the
electric fields are sampled. Generally the higher magnitude of density
fluctuations reduce the mean and increase the variance of the distribution in a
consistent manor to the predictions from resonance broadening by density
fluctuations. We also demonstrate how the properties of the electric field
distribution should vary radially from the Sun to the Earth and provide a
numerical prediction for the in-situ measurements of the upcoming Solar Orbiter
and Solar Probe Plus spacecraft.Comment: 14 pages, 11 figures, published in Astronomy and Astrophysic
- …