1,336 research outputs found

    Coherent Control of Trapped Bosons

    Full text link
    We investigate the quantum behavior of a mesoscopic two-boson system produced by number-squeezing ultracold gases of alkali metal atoms. The quantum Poincare maps of the wavefunctions are affected by chaos in those regions of the phase space where the classical dynamics produces features that are comparable to hbar. We also investigate the possibility for quantum control in the dynamics of excitations in these systems. Controlled excitations are mediated by pulsed signals that cause Stimulated Raman Adiabatic passage (STIRAP) from the ground state to a state of higher energy. The dynamics of this transition is affected by chaos caused by the pulses in certain regions of the phase space. A transition to chaos can thus provide a method of controlling STIRAP.Comment: 17 figures, Appended a paragraph on section 1 and explained details behind the hamiltonian on section

    Shear band formation in granular media as a variational problem

    Full text link
    Strain in sheared dense granular material is often localized in a narrow region called shear band. Recent experiments in a modified Couette cell provided localized shear flow in the bulk away from the confining walls. The non-trivial shape of the shear band was measured as the function of the cell geometry. First we present a geometric argument for narrow shear bands which connects the function of their surface position with the shape in the bulk. Assuming a simple dissipation mechanism we show that the principle of minimum dissipation of energy provides a good description of the shape function. Furthermore, we discuss the possibility and behavior of shear bands which are detached from the free surface and are entirely covered in the bulk.Comment: 4 pages, 5 figures; minor changes, typos and journal-ref adde

    Transport coefficients from the Boson Uehling-Uhlenbeck Equation

    Full text link
    We derive microscopic expressions for the bulk viscosity, shear viscosity and thermal conductivity of a quantum degenerate Bose gas above TCT_C, the critical temperature for Bose-Einstein condensation. The gas interacts via a contact potential and is described by the Uehling-Uhlenbeck equation. To derive the transport coefficients, we use Rayleigh-Schrodinger perturbation theory rather than the Chapman-Enskog approach. This approach illuminates the link between transport coefficients and eigenvalues of the collision operator. We find that a method of summing the second order contributions using the fact that the relaxation rates have a known limit improves the accuracy of the computations. We numerically compute the shear viscosity and thermal conductivity for any boson gas that interacts via a contact potential. We find that the bulk viscosity remains identically zero as it is for the classical case.Comment: 10 pages, 2 figures, submitted to Phys. Rev.

    Phase transition from nuclear matter to color superconducting quark matter: the effect of the isospin

    Full text link
    We compute the mixed phase of nuclear matter and 2SC matter for different temperatures and proton fractions. After showing that the symmetry energy of the 2SC phase is, to a good approximation, three times larger than the one of the normal quark phase, we discuss and compare all the properties of the mixed phase with a 2SC component or a normal quark matter component. In particular, the local isospin densities of the nuclear and the quark component and the stiffness of the mixed phase are significantly different whether the 2SC phase or the normal quark phase are considered. If a strong diquark pairing is adopted for the 2SC phase, there is a possibility to eventually enter in the nuclear matter 2SC matter mixed phase in low energy heavy ions collisions experiments. Possible observables able to discern between the formation of the 2SC phase or the normal quark phase are finally discussed.Comment: 9 pages, 8 figure

    Quantum Phase Transitions and Bipartite Entanglement

    Full text link
    We develop a general theory of the relation between quantum phase transitions (QPTs) characterized by nonanalyticities in the energy and bipartite entanglement. We derive a functional relation between the matrix elements of two-particle reduced density matrices and the eigenvalues of general two-body Hamiltonians of dd-level systems. The ground state energy eigenvalue and its derivatives, whose non-analyticity characterizes a QPT, are directly tied to bipartite entanglement measures. We show that first-order QPTs are signalled by density matrix elements themselves and second-order QPTs by the first derivative of density matrix elements. Our general conclusions are illustrated via several quantum spin models.Comment: 5 pages, incl. 2 figures. v3: The version published in PRL, including a few extra comments and clarifications for which there was no space in the PR

    Magnetoresistance Induced by Rare Strong Scatterers in a High Mobility 2DEG

    Get PDF
    We observe a strong negative magnetoresistance at non-quantizing magnetic fields in a high-mobility two-dimensional electron gas (2DEG). This strong negative magnetoresistance consists of a narrow peak around zero magnetic field and a huge magnetoresistance at larger fields. The peak shows parabolic magnetic field dependence and is attributed to the interplay of smooth disorder and rare strong scatterers. We identify the rare strong scatterers as macroscopic defects in the material and determine their density from the peak curvature.Comment: 5 pages, 4 figure
    • …
    corecore