451 research outputs found

    Redroot pigweed (Amaranthus retroflexus L.) and lamb's quarters ‎‎(Chenopodium album L.) populations exhibit a high degree of ‎morphological and biochemical diversity

    Get PDF
    Amaranthus retroflexus L. and Chenopodium album L. are noxious weeds that have a cosmopolitan distribution. These species successfully invade and are adapted to a wide variety of diverse climates. In this paper we evaluated the morphology and biochemistry of 16 populations of A. retroflexus L. and 17 populations of C. album L.. Seeds from populations collected from Spain, France and Iran were grown together at the experimental field of the agriculture research of University of Mohaghegh Ardabili and a suite of morphological traits and biochemical traits were assessed. Among the populations of A. retroflexus L. and of C. album L. were observed significant differences for all the measured traits. The number of branches for A. retroflexus L. (12.22) and inflorescence length (14.34) for C. album L. were the two characteristics that exhibited the maximum coefficient of variation. Principal component analysis of these data identified four principal components for each species that explained 83.54 (A. retroflexus L.) and 88.98 (C. album L.) of the total variation. A dendrogram based on unweighted neighbor-joining method clustered all the A. retroflexus L. and C. album L. into two main clusters and four sub-clusters. Canonical correlation analysis was used to evaluate relationships between climate classification of origin and traits. Similarly, the measured characteristics did not group along Köppen climate classification. Both analyses support the conclusion that A. retroflexus L. and C. album L. exhibit high levels of diversity despite similar environmental histories. Both species also exhibit a high diversity of the measured biochemical compounds indicating they exhibit different metabolic profiles even when grown concurrently and sympatrically. Several of the biochemical constituents identified in our study could serve as effective indices for indirect selection of stresses resistance/tolerance of A. retroflexus L. and C. album L. The diversity of the morphological and biochemical traits observed among these populations illustrates how the unique selection pressures faced by each population can alter the biology of these plants. This understanding provides new insights to how these invasive plant species successfully colonize diverse ecosystems and suggests methods for their management under novel and changing environmental conditions

    Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms

    Get PDF
    Insects respond to microbial infection by the rapid and transient expression of several genes encoding potent antimicrobial peptides. Herein we demonstrate that this antimicrobial response of Drosophila is not aspecific but can discriminate between various classes of microorganisms. We first observe that the genes encoding antibacterial and antifungal peptides are differentially expressed after injection of distinct microorganisms. More strikingly, Drosophila that are naturally infected by entomopathogenic fungi exhibit an adapted response by producing only peptides with antifungal activities. This response is mediated through the selective activation of the Toll pathway

    Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse

    Get PDF
    Tumor necrosis factor (TNF)α is an inflammatory cytokine likely to be involved in the process of corneal inflammation and neovascularization. In the present study we evaluate the role of the two receptors, TNF-receptor (TNF-R)p55 and TNF-Rp75, in the mouse model of suture-induced corneal neovascularization and lymphangiogenesis. Corneal neovascularization and lymphangiogenesis were induced by three 11–0 intrastromal corneal sutures in wild-type (WT) C57BL/6J mice and TNF-Rp55-deficient (TNF-Rp55d) and TNF-Rp75-deficient (TNF-Rp75d) mice. The mRNA expression of VEGF-A, VEGF-C, Lyve-1 and TNFα and its receptors was quantified by qPCR. The area covered with blood- or lymphatic vessels, respectively, was analyzed by immunohistochemistry of corneal flatmounts. Expression and localization of TNFα and its receptors was assessed by immunohistochemistry of sagittal sections and Western Blot. Both receptors are expressed in the murine cornea and are not differentially regulated by the genetic alteration. Both TNF-Rp55d and TNF-Rp75d mice showed a decrease in vascularized area compared to wild-type mice 14 days after suture treatment. After 21 days there were no differences detectable between the groups. The number of VEGF-A-expressing macrophages did not differ when comparing WT to TNF-Rp55d and TNF-Rp75d. The mRNA expression of lymphangiogenic markers VEGF-C or LYVE-1 does not increase after suture in all 3 groups and lymphangiogenesis showed a delayed effect only for TNF-Rp75d. TNFα mRNA and protein expression increased after suture treatment but showed no difference between the three groups. In the suture-induced mouse model, TNFα and its ligands TNF-Rp55 and TNF-Rp75 do not play a significant role in the pathogenesis of neovascularisation and lymphangiogenesis

    In vivo regulation of the IkappaB homologue cactus during the immune response of Drosophila

    Get PDF
    The dorsoventral regulatory gene pathway (spätzle/Toll/cactus) controls the expression of several antimicrobial genes during the immune response of Drosophila. This regulatory cascade shows striking similarities with the cytokine-induced activation cascade of NF-kappaB during the inflammatory response in mammals. Here, we have studied the regulation of the IkappaB homologue Cactus in the fat body during the immune response. We observe that the cactus gene is up-regulated in response to immune challenge. Interestingly, the expression of the cactus gene is controlled by the spätzle/Toll/cactus gene pathway, indicating that the cactus gene is autoregulated. We also show that two Cactus isoforms are expressed in the cytoplasm of fat body cells and that they are rapidly degraded and resynthesized after immune challenge. This degradation is also dependent on the Toll signaling pathway. Altogether, our results underline the striking similarities between the regulation of IkappaB and cactus during the immune response

    Insect immunity: the diptericin promoter contains multiple functional regulatory sequences homologous to mammalian acute-phase response elements

    Get PDF
    We are using the diptericin gene as a model system to study the control of expression of the genes encoding antibacterial peptides during the Drosophila immune reaction. In order to investigate the putative regulatory regions in the diptericin promoter, we performed DNaseI footprinting experiments combined with gel-shift assays in two inducible systems: the larval fat body and a tumorous Drosophila blood cell line. Our results confirm the importance of kappa B-like elements previously described in the immune response of insects and reveal for the first time the involvement of other regions containing sequences homologous to mammalian acute-phase response elements

    Expression and nuclear translocation of the rel/NF-kappa B-related morphogen dorsal during the immune response of Drosophila

    Get PDF
    The rel/NF-kappa B-related morphogen dorsal is a maternally expressed gene which is involved in the control of the dorso-ventral axis during early embryogenesis of Drosophila. We show that this gene is also expressed in the fat body of larvae and adults of Drosophila as well as in a tumorous blood cell line: its expression is noticeably enhanced upon bacterial (or lipopolysaccharide) challenge. This challenge also induces within 15-30 min a nuclear translocation of the dorsal protein. The genes encoding inducible antibacterial peptides in Drosophila contain kappa B-related nucleotide sequences and we show that the dorsal protein can bind to such motifs and sequence-specifically transactivate a reporter gene in co-transfection experiments with a Drosophila cell line. However, in dl1 mutants, in the absence of dorsal protein, the genes encoding antibacterial peptides retain their inducibility, suggesting a multifactorial control. The results indicate that in addition to its role in embryogenesis, dorsal is involved in the immune response of Drosophila. They also strengthen the analogy between the mammalian acute phase response and the insect immune response

    The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults

    Get PDF
    The cytokine-induced activation cascade of NF-kappaB in mammals and the activation of the morphogen dorsal in Drosophila embryos show striking structural and functional similarities (Toll/IL-1, Cactus/I-kappaB, and dorsal/NF-kappaB). Here we demonstrate that these parallels extend to the immune response of Drosophila. In particular, the intracellular components of the dorsoventral signaling pathway (except for dorsal) and the extracellular Toll ligand, spätzle, control expression of the antifungal peptide gene drosomycin in adults. We also show that mutations in the Toll signaling pathway dramatically reduce survival after fungal infection. Antibacterial genes are induced either by a distinct pathway involving the immune deficiency gene (imd) or by combined activation of both imd and dorsoventral pathways
    • …
    corecore