1,254 research outputs found

    Cochlear-bone wave can yield a hearing sensation as well as otoacoustic emission

    Full text link
    A hearing sensation arises when the elastic basilar membrane inside the cochlea vibrates. The basilar membrane is typically set into motion through airborne sound that displaces the middle ear and induces a pressure difference across the membrane. A second, alternative pathway exists, however: stimulation of the cochlear bone vibrates the basilar membrane as well. This pathway, referred to as bone conduction, is increasingly used in the construction of headphones that bypass the ear canal and the middle ear. Furthermore, otoacoustic emissions, sounds generated inside the ear and measured in the ear canal, may not involve the usual wave on the basilar membrane, suggesting that additional cochlear structures are involved in their propagation. Here we describe a novel propagation mode that emerges through deformation of the cochlear bone. Through a mathematical and computational approach we demonstrate that this wave can explain bone conduction as well as numerous properties of otoacoustic emissions.Comment: 37 pages, 4 figures, Nature Communications 201

    Individual Risk Management for Digital Payment Systems

    Get PDF
    Despite existing security standards and security technologies, such as secure hardware, gaps between users’ demand for security and the security offered by a payment system can still remain. These security gaps imply risks for users. In this paper, we introduce a framework for the management of those risks. As a result, we present an instrument enabling users to evaluate eventual risks related with digital payment systems and to handle these risks with technical and economic instruments.Payment Systems, Digital Money

    Traffic jams induced by rare switching events in two-lane transport

    Get PDF
    We investigate a model for driven exclusion processes where internal states are assigned to the particles. The latter account for diverse situations, ranging from spin states in spintronics to parallel lanes in intracellular or vehicular traffic. Introducing a coupling between the internal states by allowing particles to switch from one to another induces an intriguing polarization phenomenon. In a mesoscopic scaling, a rich stationary regime for the density profiles is discovered, with localized domain walls in the density profile of one of the internal states being feasible. We derive the shape of the density profiles as well as resulting phase diagrams analytically by a mean-field approximation and a continuum limit. Continuous as well as discontinuous lines of phase transition emerge, their intersections induce multi-critical behaviour

    Computational modeling of the auditory brainstem response to continuous speech.

    Get PDF
    OBJECTIVE: The auditory brainstem response can be recorded non-invasively from scalp electrodes and serves as an important clinical measure of hearing function. We have recently shown how the brainstem response at the fundamental frequency of continuous, non-repetitive speech can be measured, and have used this measure to demonstrate that the response is modulated by selective attention. However, different parts of the speech signal as well as several parts of the brainstem contribute to this response. Here we employ a computational model of the brainstem to elucidate the influence of these different factors. APPROACH: We developed a computational model of the auditory brainstem by combining a model of the middle and inner ear with a model of globular bushy cells in the cochlear nuclei and with a phenomenological model of the inferior colliculus. We then employed the model to investigate the neural response to continuous speech at different stages in the brainstem, following the methodology developed recently by ourselves for detecting the brainstem response to running speech from scalp recordings. We compared the simulations with recordings from healthy volunteers. MAIN RESULTS: We found that the auditory-nerve fibers, the cochlear nuclei and the inferior colliculus all contributed to the speech-evoked brainstem response, although the dominant contribution came from the inferior colliculus. The delay of the response corresponded to that observed in experiments. We further found that a broad range of harmonics of the fundamental frequency, up to about 8 kHz, contributed to the brainstem response. The response declined with increasing fundamental frequency, although the signal-to-noise ratio was largely unaffected. SIGNIFICANCE: Our results suggest that the scalp-recorded brainstem response at the fundamental frequency of speech originates predominantly in the inferior colliculus. They further show that the response is shaped by a large number of higher harmonics of the fundamental frequency, reflecting highly nonlinear processing in the auditory periphery and illustrating the complexity of the response

    Three-fold way to extinction in populations of cyclically competing species

    Get PDF
    Species extinction occurs regularly and unavoidably in ecological systems. The time scales for extinction can broadly vary and inform on the ecosystem's stability. We study the spatio-temporal extinction dynamics of a paradigmatic population model where three species exhibit cyclic competition. The cyclic dynamics reflects the non-equilibrium nature of the species interactions. While previous work focusses on the coarsening process as a mechanism that drives the system to extinction, we found that unexpectedly the dynamics to extinction is much richer. We observed three different types of dynamics. In addition to coarsening, in the evolutionary relevant limit of large times, oscillating traveling waves and heteroclinic orbits play a dominant role. The weight of the different processes depends on the degree of mixing and the system size. By analytical arguments and extensive numerical simulations we provide the full characteristics of scenarios leading to extinction in one of the most surprising models of ecology

    Coexistence in a One-Dimensional Cyclic Dominance Process

    Get PDF
    Cyclic (rock-paper-scissors-type) population models serve to mimic complex species interactions. Focusing on a paradigmatic three-species model with mutations in one dimension, we observe an interplay between equilibrium and non-equilibrium processes in the stationary state. We exploit these insights to obtain asymptotically exact descriptions of the emerging reactive steady state in the regimes of high and low mutation rates. The results are compared to stochastic lattice simulations. Our methods and findings are potentially relevant for the spatio-temporal evolution of other non-equilibrium stochastic processes.Comment: 4 pages, 4 figures and 2 pages of Supplementary Material. To appear in Physical Review

    Individual Risk Management for Digital Payment Systems

    Get PDF
    Despite existing security standards and security technologies, such as secure hardware, gaps between users’ demand for security and the security offered by a payment system can still remain. These security gaps imply risks for users. In this paper, we introduce a framework for the management of those risks. As a result, we present an instrument enabling users to evaluate eventual risks related with digital payment systems and to handle these risks with technical and economic instruments
    • 

    corecore