139 research outputs found

    Multimodal Convolutional Neural Networks to Detect Fetal Compromise During Labor and Delivery

    Get PDF
    The gold standard to assess whether a baby is at risk of oxygen deprivation during childbirth, is monitoring continuously the fetal heart rate with cardiotocography (CTG). The aim is to identify babies that could benefit from an emergency operative delivery (e.g., Cesarean section), in order to prevent death or permanent brain injury. The long, dynamic and complex CTG patterns are poorly understood and known to have high false positive and false negative rates. Visual interpretation by clinicians is challenging and reliable accurate fetal monitoring in labor remains an enormous unmet medical need. In this work, we applied deep learning methods to achieve data-driven automated CTG evaluation. Multimodal Convolutional Neural Network (MCNN) and Stacked MCNN models were used to analyze the largest available database of routinely collected CTG and linked clinical data (comprising more than 35000 births). We also assessed in detail the impact of the signal quality on the MCNN performance. On a large hold-out testing set from Oxford (n= 4429 births), MCNN improved the prediction of cord acidemia at birth when compared with Clinical Practice and previous computerized approaches. On two external datasets, MCNN demonstrated better performance compared to current feature extraction-based methods. Our group is the first to apply deep learning for the analysis of CTG. We conclude that MCNN hold potential for the prediction of cord acidemia at birth and further work is warranted. Despite the advances, our deep learning models are currently not suitable for the detection of severe fetal injury in the absence of cord acidemia - a heterogeneous, small, and poorly understood group. We suggest that the most promising way forward are hybrid approaches to CTG interpretation in labor, in which different diagnostic models can estimate the risk for different types of fetal compromise, incorporating clinical knowledge with data-driven analyses

    Diagnostic accuracy of placental growth factor and ultrasound parameters to predict the small-for-gestational-age infant in women presenting with reduced symphysis-fundus height.

    Get PDF
    OBJECTIVES: To assess the diagnostic accuracy of placental growth factor (PlGF) and ultrasound parameters to predict delivery of a small-for-gestational-age (SGA) infant in women presenting with reduced symphysis-fundus height (SFH). METHODS: This was a multicenter prospective observational study recruiting 601 women with a singleton pregnancy and reduced SFH between 24 and 37 weeks' gestation across 11 sites in the UK and Canada. Plasma PlGF concentration  95(th) centile and oligohydramnios (amniotic fluid index < 5 cm) were compared as predictors for a SGA infant < 3(rd) customized birth-weight centile and adverse perinatal outcome. Test performance statistics were calculated for all parameters in isolation and in combination. RESULTS: Of the 601 women recruited, 592 were analyzed. For predicting delivery of SGA < 3(rd) centile (n = 78), EFW < 10(th) centile had 58% sensitivity (95% CI, 46-69%) and 93% negative predictive value (NPV) (95% CI, 90-95%), PlGF had 37% sensitivity (95% CI, 27-49%) and 90% NPV (95% CI, 87-93%); in combination, PlGF and EFW < 10(th) centile had 69% sensitivity (95% CI, 55-81%) and 93% NPV (95% CI, 89-96%). The equivalent receiver-operating characteristics (ROC) curve areas were 0.79 (95% CI, 0.74-0.84) for EFW < 10(th) centile, 0.70 (95% CI, 0.63-0.77) for low PlGF and 0.82 (95% CI, 0.77-0.86) in combination. CONCLUSIONS: For women presenting with reduced SFH, ultrasound parameters had modest test performance for predicting delivery of SGA < 3(rd) centile. PlGF performed no better than EFW < 10(th) centile in determining delivery of a SGA infant

    Computer-based intrapartum fetal monitoring and beyond: A review of the 2nd Workshop on Signal Processing and Monitoring in Labor (October 2017, Oxford, UK).

    Get PDF
    The second Signal Processing and Monitoring in Labor workshop gathered researchers who utilize promising new research strategies and initiatives to tackle the challenges of intrapartum fetal monitoring. The workshop included a series of lectures and discussions focusing on: new algorithms and techniques for cardiotocogoraphy (CTG) and electrocardiogram acquisition and analyses; the results of a CTG evaluation challenge comparing state-of-the-art computerized methods and visual interpretation for the detection of arterial cord pH <7.05 at birth; the lack of consensus about the role of intrapartum acidemia in the etiology of fetal brain injury; the differences between methods for CTG analysis "mimicking" expert clinicians and those derived from "data-driven" analyses; a critical review of the results from two randomized controlled trials testing the former in clinical practice; and relevant insights from modern physiology-based studies. We concluded that the automated algorithms performed comparably to each other and to clinical assessment of the CTG. However, the sensitivity and specificity urgently need to be improved (both computerized and visual assessment). Data-driven CTG evaluation requires further work with large multicenter datasets based on well-defined labor outcomes. And before first tests in the clinic, there are important lessons to be learnt from clinical trials that tested automated algorithms mimicking expert CTG interpretation. In addition, transabdominal fetal electrocardiogram monitoring provides reliable CTG traces and variability estimates; and fetal electrocardiogram waveform analysis is subject to promising new research. There is a clear need for close collaboration between computing and clinical experts. We believe that progress will be possible with multidisciplinary collaborative research

    Placental stress, and beyond

    No full text

    Preeclampsia and the systemic inflammatory response

    No full text
    Normal pregnancy is associated with a systemic inflammatory response. The response is exacerbated in preeclampsia and can account for its clinical features. Many of the physiologic changes of normal pregnancy are part of an acute-phase reaction, which is generated by an inflammatory response. The placenta is the proximal cause of these problems. There are several possible placental factors that may evoke the inflammatory responses that currently are being investigated. The special susceptibility of obese women, or those with diabetes or chronic hypertension, to preeclampsia is explained by the chronic systemic inflammatory responses that these women have. The clinical implications of these concepts are discussed. © 2004 Elsevier Inc. All rights reserved

    Phase-rectified signal averaging for intrapartum electronic fetal heart rate monitoring is related to acidaemia at birth

    No full text
    Objective Recent studies suggest that phase-rectified signal averaging (PRSA), measured in antepartum fetal heart rate (FHR) traces, may sensitively indicate fetal status; however, its value has not been assessed during labour. We determined whether PRSA relates to acidaemia in labour, and compare its performance to short-term variation (STV), a related computerised FHR feature. Design Historical cohort. Setting Large UK teaching hospital. Population All 7568 Oxford deliveries that met the study criteria from April 1993 to February 2008. Methods We analysed the last 30 minutes of the FHR and associated outcomes of infants. We used computerised analysis to calculate PRSA decelerative capacity (DCPRSA), and its ability to predict umbilical arterial blood pH ≤ 7.05 using receiver operator characteristic (ROC) curves and event rate estimates (EveREst). We compared DCPRSA with STV calculated on the same traces. Main outcome measure Umbilical arterial blood pH ≤ 7.05. Results We found that PRSA could be measured in all cases. DCPRSA predicted acidaemia significantly better than STV: the area under the ROC curve was 0.665 (95% CI 0.632-0.699) for DCPRSA, and 0.606 (0.573-0.639) for STV (P = 0.007). EveREst plots showed that in the worst fifth centile of cases, the incidence of low pH was 17.75% for DCPRSA but 11.00% for STV (P < 0.001). DCPRSA was not highly correlated with STV. Conclusions DCPRSA of the FHR can be measured in labour, and appears to predict acidaemia more accurately than STV. Further prospective evaluation is warranted to assess whether this could be clinically useful. The weak correlation between DCPRSA and STV suggests that they could be combined in multivariate FHR analyses. © 2014 Royal College of Obstetricians and Gynaecologists
    corecore