16 research outputs found

    Corrections for regular identification of high energy positive particles in experimental data using lobachevsky space

    Get PDF
    In this work, high-energy positive charged particles are distinguished using the Lobachevsky space or Hyperbolic space, which is defined as the total rapidity multiplied by hyperbolic cosines of the transverse and longitudinal rapidity of the particles. Experimental data from eight different types of interactions detected in the bubble chambers accumulated in the high-energy sector were used in the calculations. The weights used to construct the proton and positive pion distributions for each of the interacting secondary particles have been eliminated, allowing such studies to be performed such as particle counting and clustering.These weights do not include calculated weights at azimuth angles, near the center of the star, or without momentum measurements. We now have the opportunity to study positive pions and protons. The percentage of confused particles increases with the beam energy. After the reconstruction, we conducted a study of the temperature of the charged particles produced by the p + p interaction of 205 GeV, where Tsallis temperatures are close to Hagedorn . On the other hand, Hagedor  and  temperatures are higher than Tsallis, which means that the unstable states exchange heat as they move to equilibrium

    Corrections for regular identification of high energy positive particles in experimental data using lobachevsky space

    Get PDF
    In this work, high-energy positive charged particles are distinguished using the Lobachevsky space or Hyperbolic space, which is defined as the total rapidity multiplied by hyperbolic cosines of the transverse and longitudinal rapidity of the particles. Experimental data from eight different types of interactions detected in the bubble chambers accumulated in the high-energy sector were used in the calculations. The weights used to construct the proton and positive pion distributions for each of the interacting secondary particles have been eliminated, allowing such studies to be performed such as particle counting and clustering.These weights do not include calculated weights at azimuth angles, near the center of the star, or without momentum measurements. We now have the opportunity to study positive pions and protons. The percentage of confused particles increases with the beam energy. After the reconstruction, we conducted a study of the temperature of the charged particles produced by the p + p interaction of 205 GeV, where Tsallis temperatures are close to Hagedorn . On the other hand, Hagedor  and  temperatures are higher than Tsallis, which means that the unstable states exchange heat as they move to equilibrium

    CHARACTERISTICS OF THE SECONDARY PARTICLES FROM π-C INTERACTIONS AT 40 GEV/C IN DIFFERENT NUCLEAR MATTER PHASES

    Get PDF
    In this paper we have presented the angular and momentum characteristics of the secondary particles from Π–C interactions at 40 GeV/c in different phase transition regions of nuclear matter

    Dependence of the cut-off parameters for the cluster reconstruction on incident momenta

    Get PDF
    In this work, firstly, we have determined the multiplicities of protons that are involved from projectiles to interactions, and secondly, the mean incident momentum using experimental data on the collisions of proton, helium, oxygen, silicon, and sulfur with the nuclear emulsion at 4.5A GeV/c. We have studied the dependences of clot numbers, number of particles in the clot, rapidity, and the mean azimuthal value on the variable dij, and the dependence of the cluster number on the mean value of the variable dij. Using the “Cone” algorithm for the clustering, we have precisely identified that the cut-off parameter to compose the clusters consisted of s and f tracks produced in (p, He, C, O, Si, S) + Em collisions decreases by the power law with mean values of incident momentum

    Fragmentation of projectile nucleus

    Full text link
    The temperature characteristics of carbon spectator fragments formed in carbon collisions with carbon nuclei at a primary momentum of 4.2 GeV/c per nucleon were presented and discussed on corrected experimental data. As well as studied the multiplicities formed by the spectator protons, deuterons, and tritons in the inelastic nucleus-nucleus interactions. We found that the temperature absorbed by the spectator fragments is dependent on their mass.Comment: 8 pages, 5 figures, 2 table

    Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA

    No full text
    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5<Q2<80GeV25.5<Q^2<80\,{\rm GeV}^2 and inelasticities 0.2<y<0.60.2<y<0.6 is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290pb1290\,{\rm pb}^{-1}. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q2Q^2. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q2Q^2-interval are also determined. Previous results of inclusive jet cross sections in the range 150<Q2<15000GeV2150<Q^2<15\,000\,{\rm GeV}^2 are extended to low transverse jet momenta 5<PTjet<7GeV5<P_{T}^{\rm jet}<7\,{\rm GeV}. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of Q2Q^2, the strong coupling constant αs(MZ)\alpha_s(M_Z) is determined in next-to-leading order.A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5<Q2<80GeV25.5<Q^2<80\,{\rm GeV}^2 and inelasticities 0.2<y<0.60.2<y<0.6 is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290pb1290\,{\rm pb}^{-1}. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q2Q^2. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q2Q^2-interval are also determined. Previous results of inclusive jet cross sections in the range 150<Q2<15000GeV2150<Q^2<15\,000\,{\rm GeV}^2 are extended to low transverse jet momenta 5<PTjet<7GeV5<P_{T}^{\rm jet}<7\,{\rm GeV}. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of Q2Q^2, the strong coupling constant αs(MZ)\alpha_s(M_Z) is determined in next-to-leading order.A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5<Q2<80GeV25.5<Q^2 <80\,\mathrm {GeV}^2 and inelasticities 0.2<y<0.60.2<y<0.6 is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290pb1290\,\mathrm {pb}^{-1} . Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q2Q^2 . Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q2Q^2 -interval are also determined. Previous results of inclusive jet cross sections in the range 150<Q2<15,000GeV2150<Q^2 <15{,}000\,\mathrm {GeV}^2 are extended to low transverse jet momenta 5<PTjet<7GeV5<P_\mathrm{T}^\mathrm{jet} <7\,\mathrm {GeV} . The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of Q2Q^2 , the strong coupling constant αs(MZ)\alpha _s(M_Z) is determined in next-to-leading order

    Measurement of lepton-jet correlation in deep-inelastic scattering with the H1 detector using machine learning for unfolding

    No full text
    The first measurement of lepton-jet momentum imbalance and azimuthal correlation in lepton-proton scattering at high momentum transfer is presented. These data, taken with the H1 detector at HERA, are corrected for detector effects using an unbinned machine learning algorithm OmniFold, which considers eight observables simultaneously in this first application. The unfolded cross sections are compared to calculations performed within the context of collinear or transverse-momentum-dependent (TMD) factorization in Quantum Chromodynamics (QCD) as well as Monte Carlo event generators. The measurement probes a wide range of QCD phenomena, including TMD parton distribution functions and their evolution with energy in so far unexplored kinematic regions

    Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    No full text

    Diffractive Dijet Production with a Leading Proton in ep Collisions at HERA

    No full text
    The cross section of the diffractive process e^+p -> e^+Xp is measured at a centre-of-mass energy of 318 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction with photon virtualities Q^2 <2 GeV^2 and in deep-inelastic scattering with 4 GeV^2<Q^2<80 GeV^2. The results are compared to next-to-leading order QCD calculations based on diffractive parton distribution functions as extracted from measurements of inclusive cross sections in diffractive deep-inelastic scattering

    Colombeau generalized functions on manifolds

    No full text
    Eduard NigschZsfassung in dt. SpracheWien, Techn. Univ. u. Univ., Dipl.-Arb., 2006OeBB(VLID)161012
    corecore