31 research outputs found

    Evaluation of five multisteroid LC‒MS/MS methods used for routine clinical analysis: comparable performance was obtained for nine analytes

    Get PDF
    Objectives: A mass spectrometry (LC‒MS/MS)-based interlaboratory comparison study was performed for nine steroid analytes with five participating laboratories. The sample set contained 40 pooled samples of human serum generated from preanalyzed leftovers. To obtain a well-balanced distribution across reference intervals of each steroid, the leftovers first underwent a targeted mixing step. Methods: All participants measured a sample set once using their own multianalyte protocols and calibrators. Four participants used in-house developed measurement platforms, including IVD-CE certified calibrators, which were used by three participants; the 5th lab used the whole LC‒MS kit from an IVD manufacturer. All labs reported results for 17-hydroxyprogesterone, androstenedione, cortisol, and testosterone, and four labs reported results for 11-deoxycortisol, corticosterone, cortisone, dehydroepiandrosterone sulfate (DHEAS), and progesterone. Results: Good or acceptable overall comparability was found in Bland‒Altmann and Passing‒Bablok analyses. Mean bias against the overall mean remained less than ±10 % except for DHEAS, androstenedione, and progesterone at one site and for cortisol and corticosterone at two sites (max. -18.9 % for androstenedione). The main analytical problems unraveled by this study included a bias not previously identified in proficiency testing, operator errors, non-supported matrix types and higher inaccuracy and imprecision at lower ends of measuring intervals. Conclusions: This study shows that intermethod comparison is essential for monitoring the validity of an assay and should serve as an example of how external quality assessment could work in addition to organized proficiency testing schemes

    Influence of Lactose on the Maillard Reaction and Dehydroalanine-Mediated Protein Cross-Linking in Casein and Whey

    No full text
    A liquid chromatography–mass spectrometry method based on multiple reaction monitoring (MRM) was developed for the simultaneous quantification of markers representing two potentially competing pathways, the Maillard reaction and the dehydroalanine pathway. The two pathways involve the same residues in the proteins to some extent, namely, the essential amino acid lysine, as well as free-amino terminals available on proteins and polypeptides, competition between the two pathways in food systems may occur. The developed method comprises the following markers of the Maillard reaction: furosine, N-ε-(carboxyethyl)lysine (CEL) and N-ε-(carboxymethyl)lysine (CML), together with the dehydroalanine reaction pathway markers; lanthionine (LAN) and lysinoalanine (LAL), as well as lysine itself. The validated method was then used for the absolute quantification of heat-induced protein modifications in model systems of micellar casein and whey protein isolates (MCI and WPI, respectively) in the presence or absence of lactose. As expected, the Maillard reaction markers furosine, CEL and CML increased during the applied heat treatment in the presence of lactose, whereas the dehydroalanine markers, LAN and LAL increased with heating in both MCI and WPI, both in the presence and absence of lactose, although at lower levels in the presence of lactose, confirming the competing state of the two pathways
    corecore