UNIVERSITY OF COPENHAGEN

Control of maillard reactions in lactose hydrolysed uht-processed milk by green tea extract

Poojary, Mahesha Manjunatha; Jansson, Therese; Rauh, Valentin; Sørensen, John; Lund, Marianne Nissen

Publication date: 2018

Document version Publisher's PDF, also known as Version of record

Document license: Unspecified

Citation for published version (APA): Poojary, M. M., Jansson, T., Rauh, V., Sørensen, J., & Lund, M. N. (2018). *Control of maillard reactions in* lactose hydrolysed uht-processed milk by green tea extract. Abstract from Bonn Polyphenols World Congress, Bonn, Germany.

CONTROL OF MAILLARD REACTIONS IN LACTOSE HYDROLYSED UHT-PROCESSED MILK BY GREEN TEA EXTRACT

<u>Mahesha M. Poojary</u>¹, Therese Jansson¹, Valentin Rauh², John Sørensen², Marianne N. Lund¹ ¹Department of Food Science. University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark ²Arla Foods R&D, Agro Food Park 19, 8200 Aarhus N, Denmark

Presenting author. Email: mahesha@food.ku.dk

Introduction: Existing literature show that Maillard reactions (MR) are more pronounced in lactose-hydrolysed (LH) milk and the heat load during UHT-processing may boost the reaction^{1,2,3}. In the present work, we have investigated the effect of epigallocatechin gallate (EGCG)-enriched green tea extract (GTE) in controlling MR in long-term stored LH UHT-processed milk.

Methods: GTE was added to LH skim milk, UHT treated, stored at room temperature for 1 year and then analysed for free polyphenols, α -dicarbonyls, polyphenol- α -dicarbonyl adducts and advanced glycation end-products (AGEs).

Results: The UHT-processing resulted in epimerization of EGCG into gallocatechin gallate (GCG). The concentration of free EGCG/GCG decreased dramatically during storage, indicating that polyphenols are bound to reactants, intermediates and/or products of MR. Mass spectrometric analysis confirmed that polyphenols could trap α -dicarbonyls, including glyoxal and 3-deoxyglucosone, which was further correlated with the decreased levels of free α -dicarbonyls in GTE-dosed milk. Moreover, the addition of GTE lead to the reduced formation of AGEs.

Conclusions: Polyphenols can form covalent adducts with MR intermediates, thereby, inhibit MR cascades in milk. The addition of GTE could be a viable strategy to improve quality and stability of LH UHT milk, but the effects of GTE on protein binding should be investigated further.

References:

- 1. Jansson et al., J. Agric. Food Chem., 2014, 62 (31), pp 7886–7896.
- 2. Naranjo et al., Food Chem., **2013**, 141(4), pp 3790-3795.
- 3. Jansson et al., J. Agric. Food Chem., 2017, 65 (48), pp 10550–10561.