5 research outputs found

    The impact of 10-valent pneumococcal vaccine introduction on invasive disease in Fiji.

    Get PDF
    BACKGROUND: In 2012, Fiji introduced the 10-valent pneumococcal conjugate vaccine (PCV10). We assessed the impact of PCV10 on invasive pneumococcal disease (IPD), probable bacterial or pneumococcal meningitis (PBPM), meningitis and sepsis 3-5 years post-introduction. METHODS: Laboratory-confirmed IPD and PBPM cases were extracted from national laboratory records. ICD-10-AM coded all-cause meningitis and sepsis cases were extracted from national hospitalisation records. Incidence rate ratios were used to compare outcomes pre/post-PCV10, stratified by age groups: 1-23m, 2-4y, 5-9y, 10-19y, 20-54y, ≥55y. To account for different detection and serotyping methods in the pre-and post-PCV10 period, a Bayesian inference model estimated serotype-specific changes in IPD, using pneumococcal carriage and surveillance data. FINDINGS: There were 423 IPD, 1,029 PBPM, 1,391 all-cause meningitis and 7,611 all-cause sepsis cases. Five years post-PCV10 introduction, IPD declined by 60% (95%CI: 37%, 76%) in children 1-23m months old, and in age groups 2-4y, 5-9y, 10-19y although confidence intervals spanned zero. PBPM declined by 36% (95%CI: 21%, 48%) among children 1-23 months old, and in all other age groups, although some confidence intervals spanned zero. Among children <5y of age, PCV10-type IPD declined by 83% (95%CI; 70%, 90%) and with no evidence of change in non-PCV10-type IPD (9%, 95%CI; -69, 43%). There was no change in all-cause meningitis or sepsis. Post-PCV10, the most common serotypes in vaccine age-eligible and non-age eligible people were serotypes 8 and 23B, and 3 and 7F, respectively. INTERPRETATIONS: Our study demonstrates the effectiveness of PCV10 against IPD in a country in the Asia-Pacific of which there is a paucity of data. FUNDING: This study was support by the Department of Foreign Affairs and Trade of the Australian Government and Fiji Health Sector Support Program (FHSSP). FHSSP is implemented by Abt JTA on behalf of the Australian Government

    Effect of ten-valent pneumococcal conjugate vaccine introduction on pneumonia hospital admissions in Fiji: a time-series analysis

    Get PDF
    BACKGROUND: In October, 2012, Fiji introduced routine infant immunisation with a ten-valent pneumococcal conjugate vaccine (PCV10) using three primary doses and no booster dose (3 + 0 schedule). Data are scarce for the effect of PCV in the Asia and Pacific region. We aimed to evaluate the effect of PCV10 on pneumonia hospital admissions in children younger than 5 years and adults aged 55 years and older in Fiji, 5 years after vaccine introduction. METHODS: We did a time-series analysis assessing changes in pneumonia hospital admissions at three public tertiary hospitals in Fiji. Four pneumonia outcomes were evaluated: all-cause pneumonia, severe or very severe pneumonia, hypoxic pneumonia, and radiological pneumonia. Participants aged younger than 2 months, 2-23 months, 24-59 months, and 55 years and older were included. Data were extracted from the national hospital admission database according to International Classification of Diseases-tenth revision codes J10·0-18·9, J21, and J22 for all-cause pneumonia. Medical records and chest radiographs were reviewed for the main tertiary hospital to reclassify hospital admissions in children aged younger than 2 years as severe or very severe, hypoxic, or radiological pneumonia as per WHO definitions. Time-series analyses were done using the synthetic control method and multiple imputation to adjust for changes in hospital usage and missing data. FINDINGS: Between Jan 1, 2007, and Dec 31, 2017, the ratio of observed cases to expected cases for all-cause pneumonia was 0·92 (95% CI 0·70-1·36) for children aged younger than 2 months, 0·86 (0·74-1·00) for children aged 2-23 months, 0·74 (0·62-0·87) for children aged 24-59 months, and 1·90 (1·53-2·31) in adults aged 55 years and older, 5 years after PCV10 introduction. These findings indicate a reduction in all-cause pneumonia among children aged 24-59 months and an increase in adults aged 55 years and older, but no change among children aged younger than 2 months. Among children aged 2-23 months, we observed declines of 21% (95% CI 5-35) for severe or very severe pneumonia, 46% (33-56) for hypoxic pneumonia, and 25% (9-38) for radiological pneumonia. Mortality reduced by 39% (95% CI 5-62) for all-cause pneumonia, bronchiolitis, and asthma admissions in children aged 2-23 months. INTERPRETATION: The introduction of PCV10 was associated with a decrease in pneumonia hospital admissions in children aged 2-59 months. This is the first study in a middle-income country in the Asia and Pacific region to show the effect of PCV on pneumonia, filling gaps in the literature on the effects of PCV10 and 3 + 0 schedules. These data support decision making on PCV introduction for other low-income and middle-income countries in the region. FUNDING: Department of Foreign Affairs and Trade of the Australian Government

    Factors associated with pneumococcal carriage and density in children and adults in Fiji, using four cross-sectional surveys

    Get PDF
    This study describes predictors of pneumococcal nasopharyngeal carriage and density in Fiji. We used data from four annual (2012-2015) cross-sectional surveys, pre- and post-introduction of ten-valent pneumococcal conjugate vaccine (PCV10) in October 2012. Infants (5-8 weeks), toddlers (12-23 months), children (2-6 years), and their caregivers participated. Pneumococci were detected and quantified using lytA qPCR, with molecular serotyping by microarray. Logistic and quantile regression were used to determine predictors of pneumococcal carriage and density, respectively. There were 8,109 participants. Pneumococcal carriage was negatively associated with years post-PCV10 introduction (global P<0.001), and positively associated with indigenous iTaukei ethnicity (aOR 2.74 [95% CI 2.17-3.45] P<0.001); young age (infant, toddler, and child compared with caregiver participant groups) (global P<0.001); urban residence (aOR 1.45 [95% CI 1.30-2.57] P<0.001); living with ≥2 children <5 years of age (aOR 1.42 [95% CI 1.27-1.59] P<0.001); low family income (aOR 1.44 [95% CI 1.28-1.62] P<0.001); and upper respiratory tract infection (URTI) symptoms (aOR 1.77 [95% CI 1.57-2.01] P<0.001). Predictors were similar for PCV10 and non-PCV10 carriage, except PCV10 carriage was negatively associated with PCV10 vaccination (0.58 [95% CI 0.41-0.82] P = 0.002) and positively associated with exposure to household cigarette smoke (aOR 1.21 [95% CI 1.02-1.43] P = 0.031), while there was no association between years post-PCV10 introduction and non-PCV10 carriage. Pneumococcal density was positively associated with URTI symptoms (adjusted median difference 0.28 [95% CI 0.16, 0.40] P<0.001) and toddler and child, compared with caregiver, participant groups (global P = 0.008). Predictors were similar for PCV10 and non-PCV10 density, except infant, toddler, and child participant groups were not associated with PCV10 density. PCV10 introduction was associated with reduced the odds of overall and PCV10 pneumococcal carriage in Fiji. However, after adjustment iTaukei ethnicity was positively associated with pneumococcal carriage compared with Fijians of Indian Descent, despite similar PCV10 coverage rates

    The impact of the rotavirus vaccine on diarrhoea, five years following national introduction in Fiji

    Get PDF
    Background: In 2012, Fiji became the first independent Pacific island country to introduce rotavirus vaccine. We describe the impact of rotavirus vaccine on all-cause diarrhoea admissions in all ages, and rotavirus diarrhoea in children <5 years of age. Methods: An observational study was conducted retrospectively on all admissions to the public tertiary hospitals in Fiji (2007-2018) and prospectively on all rotavirus-positive diarrhoea admissions in children <5 years at two hospital sites (2006-2018, and 2010-2015), along with rotavirus diarrhoea outpatient presentations at one secondary public hospital (2010-2015). The impact of rotavirus vaccine was determined using incidence rate ratios (IRR) of all-cause diarrhoea admissions and rotavirus diarrhoea, comparing the pre-vaccine and post-vaccine periods. All-cause admissions were used as a control. Multiple imputation was used to impute missing stool samples. Findings: All-cause diarrhoea admissions declined among all age groups except among infants ≤2 months old and adults ≥55 years. For children <5 years, all-cause diarrhoea admissions declined by 39% (IRR)=0•61, 95%CI; 0•57-0•65, p-value<0•001). There was an 81% (95%CI; 51-94%) reduction in mortality among all-cause diarrhoea admissions in children under <5 years. Rotavirus diarrhoea admissions at the largest hospital among children <5 years declined by 87% (IRR=0•13, 95%CI; 0•10-0•17, p-value<0•001). Among rotavirus diarrhoea outpatient presentations, the IRR was 0•39 (95%CI; 0•11, 1.21, p-value=0.077). Interpretations: Morbidity and mortality due to rotavirus and all-cause diarrhoea in Fiji has declined in people aged 2 months to 54 years after the introduction of the RV vaccine. Funding: Supported by WHO and the Australian Government
    corecore